
Introduction to Information Retrieval

Introduction to

Information Retrieval

Crawling and Duplicates

Introduction to Information Retrieval

This lecture
§ Web Crawling
§ (Near) duplicate detection

2

Introduction to Information Retrieval

Basic crawler operation
§ Begin with known “seed” URLs
§ Fetch and parse them

§ Extract URLs they point to
§ Place the extracted URLs on a queue

§ Fetch each URL on the queue and repeat
§ Breadth First crawling

Sec. 20.2

3

Introduction to Information Retrieval

Crawling picture

Web

URLs frontier

Unseen Web

Seed
pages

URLs crawled
and parsed

Sec. 20.2

4

URLs that have
been discovered,
but are yet to be
crawled

Introduction to Information Retrieval

Simple picture – complications
§ Web crawling isn’t feasible with one machine

§ All of the above steps are usually distributed
§ Malicious pages

§ Spam pages
§ Spider traps

§ Even non-malicious pages pose challenges
§ Latency/bandwidth to remote servers vary
§ Webmasters’ stipulations

§ How “deep” should you crawl a site’s URL hierarchy?
§ Site mirrors and duplicate pages

§ Politeness – don’t hit a server too often

Sec. 20.1.1

5

Introduction to Information Retrieval

What any crawler must do

§ Be Polite: Respect implicit and explicit
politeness considerations

§ Be Robust: Be immune to spider traps and
other malicious behavior from web servers

Sec. 20.1.1

6

Introduction to Information Retrieval

Explicit and implicit politeness
§ Explicit politeness: specifications from webmasters

on what portions of a site can be crawled
§ robots.txt (see next slide)

§ Implicit politeness: even with no specification, avoid
hitting any site too often

Sec. 20.2

7

Introduction to Information Retrieval

Robots.txt
§ Protocol for giving spiders (“robots”) limited

access to a website, originally from 1994

§ Website announces its request on what can(not)
be crawled
§ For a server, create a file /robots.txt
§ This file specifies access restrictions

§ Details: www.robotstxt.org/robotstxt.html

Sec. 20.2.1

8

http://www.robotstxt.org/robotstxt.html

Introduction to Information Retrieval

What any crawler should do
§ Be capable of distributed operation: designed to

run on multiple distributed machines

§ Be scalable: designed to increase the crawl rate
by adding more machines

§ Performance/efficiency: permit full use of
available processing and network resources

Sec. 20.1.1

9

Introduction to Information Retrieval

What any crawler should do
§ Fetch pages of “higher quality” first

§ Continuous operation: Continue fetching fresh copies
of a previously fetched page

§ Extensible: Adapt to new data formats, protocols

Sec. 20.1.1

10

Introduction to Information Retrieval

URL frontier
§ URLs that have been discovered, but are yet to be

crawled
§ Can include multiple pages from the same host
§ Must avoid trying to fetch them all at the same time
§ Must try to keep all crawling threads busy

Sec. 20.2

11

Introduction to Information Retrieval

Processing steps in crawling
§ Pick a URL from the frontier
§ Fetch the document at the URL
§ Parse the URL

§ Extract links from it to other docs (URLs)

§ Check if URL has content already seen
§ If not, add to indexes

§ For each extracted URL
§ Ensure it passes certain URL filter tests
§ Check if it is already in the frontier (duplicate URL

elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

Sec. 20.2.1

12

Introduction to Information Retrieval

Parsing: URL normalization

§ When a fetched document is parsed, some of the
extracted links are relative URLs

§ E.g., http://en.wikipedia.org/wiki/Main_Page has a
relative link to /wiki/Wikipedia:General_disclaimer
which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

§ During parsing, must normalize (expand) such relative
URLs

Sec. 20.2.1

13

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

Introduction to Information Retrieval

Content seen?
§ Duplication is widespread on the web
§ If the page just fetched is already in the index, do not

further process it
§ This is verified using document fingerprints or

shingles
§ Second part of this lecture

Sec. 20.2.1

14

Introduction to Information Retrieval

Distributing the crawler
§ Run multiple crawl threads, under different

processes – potentially at different nodes
§ May be geographically distributed nodes

§ Partition hosts being crawled into nodes

Sec. 20.2.1

15

Introduction to Information Retrieval

URL frontier: two main considerations

§ Politeness: do not hit a web server too frequently
§ Freshness: crawl some pages more often than

others
§ E.g., pages (such as News sites) whose content

changes often

These goals may conflict with each other.
(E.g., simple priority queue fails – many links out of

a page go to its own site, creating a burst of
accesses to that site.)

Sec. 20.2.3

16

Introduction to Information Retrieval

Politeness – challenges
§ Even if we restrict only one thread to fetch from a

host, can hit it repeatedly

§ Common heuristic: insert time gap between
successive requests to a host that is >> time for most
recent fetch from that host

Sec. 20.2.3

17

Introduction to Information Retrieval

Introduction to

Information Retrieval

Near duplicate
document detection

18

Introduction to Information Retrieval

Duplicate documents
§ The web is full of duplicated content

§ Strict duplicate detection = exact match
§ Not as common

§ But many, many cases of near duplicates
§ E.g., Last modified date the only difference

between two copies of a page

Sec. 19.6

Introduction to Information Retrieval

Duplicate/Near-Duplicate Detection

§ Duplication: Exact match can be detected with
fingerprints

§ Near-Duplication: Approximate match
§ Overview

§ Compute syntactic similarity with an edit-distance
measure

§ Use similarity threshold to detect near-duplicates, e.g.,
Similarity > 80% => Documents are “near duplicates”

Sec. 19.6

Introduction to Information Retrieval

Computing Similarity
§ Features:

§ Segments of a document (natural or artificial breakpoints)
§ Shingles (Word N-Grams)
§ a rose is a rose is a rose → 4-grams are

a_rose_is_a
rose_is_a_rose

is_a_rose_is

§ Similarity Measure between two docs (= sets of shingles)
§ Jaccard cooefficient: (Size_of_Intersection / Size_of_Union)

Sec. 19.6

Introduction to Information Retrieval

Shingles + Set Intersection
§ Computing exact set intersection of shingles
between all pairs of documents is expensive

§Approximate using a cleverly chosen subset of
shingles from each (a sketch)
§ Estimate (size_of_intersection / size_of_union)
based on a short sketch

Doc
A

Shingle set A Sketch A

Doc
B

Shingle set B Sketch B

Jaccard

Sec. 19.6

Introduction to Information Retrieval

Sketch of a document
§ Create a “sketch vector” (of size ~200) for each

document
§ Documents that share ≥ t (say 80%) corresponding

vector elements are deemed near duplicates
§ For doc D, sketchD[i] is as follows:

§ Let f map all shingles in the universe to 1..2m

(e.g., f = fingerprinting)
§ Let pi be a random permutation on 1..2m

§ Pick MIN {pi(f(s))} over all shingles s in D

Sec. 19.6

See details in book

Introduction to Information Retrieval

Final notes
§ Shingling is a randomized algorithm

§ It will give us the right (wrong) answer with some
probability on any input

§ We’ve described how to detect near duplication in a
pair of documents

§ In “real life” we’ll have to concurrently look at many
pairs
§ See text book for details

24

