Introduction to Information Retrieval

Lecture 5: Scoring, Term Weighting and the Vector Space Model

This lecture

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
 - Good for expert users with precise understanding of their needs and the collection
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

PARAMETRIC AND ZONE INDEXES

A ranking scheme that can be used with boolean retrieval

Metadata, Fields, Zones

- Documents can have metadata and fields
 - E.g., title of document, author of document, date of creation
- Zones similar to fields, but can contain arbitrary text
 - E.g., abstract, introduction, ... of a research paper
- We can have an index for each field/zone
 - To support queries like "documents having merchant in the title and william in the author list"
 - Either separate index for each field/zone, or part of the same index
 T = 10

dup learning

is, 2 cond

Wn

Weighted zone scoring

- Given a Boolean query q and a document d
 - Compute a 'zone match score' in [0,1] for each zone/field of d with q
 - Compute linear combination of zone match scores, where each zone assigned a weight (sum of weights equal to 1.0)
 - Sometimes called 'ranked Boolean retrieval'
- How to decide the weights?
 - Option 1: Specified by experts, e.g., match in "title" has higher significance than match in "body"
 - Option 2: Learn from training examples application of Machine Learning

WEIGHTING THE IMPORTANCE OF TERMS

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
 - If the query term does not occur in the document: score should be 0
 - If the query terms occurs in the document, score 1
- For a multi-term query
 - View the query as well as the document as sets of words
 - Compute some similarity measure between the two sets

Jaccard coefficient

A commonly used measure of overlap of two sets A A- u.w. st. of Am. B= Am. is qr. country and B

TOU

1

- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document 1: caesar died in march
- Document 2: the long march

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
 - A document/zone that mentions a query-term more often intuitively matches the query more
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

Feb 1: Summary till Now

- We want to propose a query-document match score.
- Idea 1:
 - Treat one-term query as membership in a document (if term occurs in doc then 1, else 0)
 - Extend set-membership idea to Jaccard (IOU) between 2 sets (jaccard(A,B) = |A ∩ B| / |A ∪ B|)
 - This considers query and doc as a bag of words.
- Problems with this Idea
 - Ignores how many times a term occurs in a doc
 - Ignores how many times a term occurs in a corpus (rare/frequent)

Introduction to Information Retrieval

Recall: Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Sec. 6.2

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in $\mathbb{N}^{|V|}$: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words Model

- Each document is a 'bag' (unordered set) of words
 - Consider a column of the matrix below

1

Count vector for a document

score $(q, d_1) > score(q, d_2)$ $\sum \int \frac{1}{2} \frac{1}{2$

	h	d 2				
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0
4						

Bag of words model: a drawback

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker
 than John have the same vectors
- In a sense, this is a step back: The positional index was able to distinguish these two documents.

Quik

- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase propertionally with term frequency.

NB: frequency = count in IR

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- $0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:

• score =
$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

 The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., *arachnocentric*)
- A document containing this term is very likely to be relevant to the query *arachnocentric*
- \rightarrow We want a high weight for rare terms.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., *high, increase, line*)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want positive weights for words like *high*, *increase*, *and line*
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$

We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$\mathrm{idf}_t = \log_{10} \left(\frac{N}{\mathrm{df}_t} \right)$$

There is one idf value for each term *t* in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

COMBINING TF AND IDF

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathrm{tf}_{t,d}) \times \log_{10}(N/\mathrm{df}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences of term within a document
- Increases with the rarity of the term in the collection

Introduction to Information Retrieval

Sec. 6.2.2 Score for a document given a query: scheme 1

Score(q,d) =
$$\sum_{t \in q \cap d} \text{tf.idf}_{t,d}$$

There are many variants

- How "tf" is computed (with/without logs)
- Whether the terms in the query are also weighted

31

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Score for a document given a query: scheme 2

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Very high-dimensional space: tens of millions of dimensions in case of a web search engine
- These are very sparse vectors most entries are zero.
- Consider both documents and the given query as points or vectors in this space
- Compute in some way, the 'similarity' between the two vectors

Hurique turs

Documents as Vectors

So we have a |V|-dimensional vector space

- Terms are axes of the space
- Documents are points or vectors in this space [12]

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

 $\vec{z} = 1\vec{i} + 2\vec{j}$

Queries as vectors

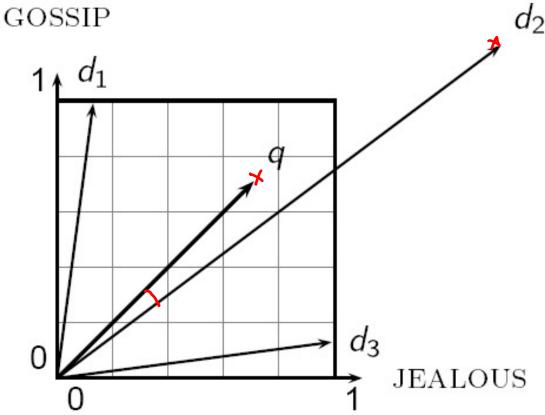
- Key idea 1: Do the same for queries: represent queries as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.
- Two documents having similar content can have large Euclidean distance simply because one document is much longer than the other

Why distance is a bad idea

The Euclidean distance between **q** and $\vec{d_2}$ is large even though the distribution of terms in the query \vec{q} and the distribution of terms in the document d_2 are very similar.

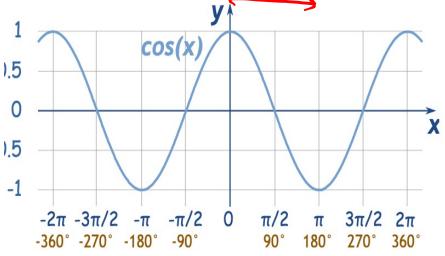


Use angle instead of distance

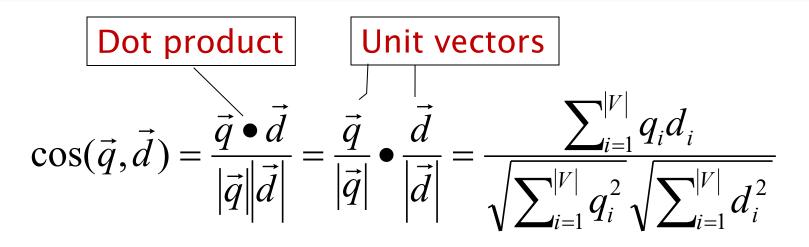
- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>increasing</u> order of the angle between query and document
 - Rank documents in <u>decreasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]



cosine(query,document)



 q_i is the tf-idf weight of term *i* in the query d_i is the tf-idf weight of term *i* in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

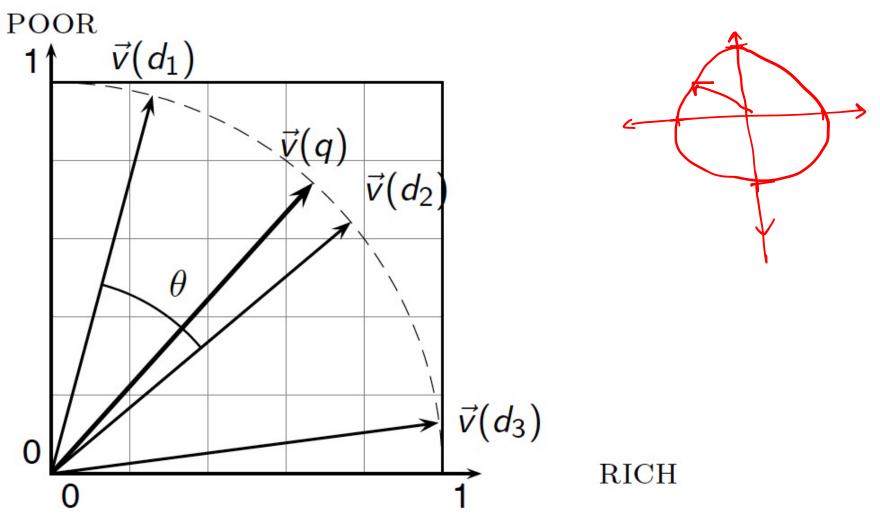
Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q},\vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated



Cosine similarity amongst 3 documents

How similar are

the novels SaS: Sense and Sensibility PaP: Pride and *Prejudice*, and WH: Wuthering Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

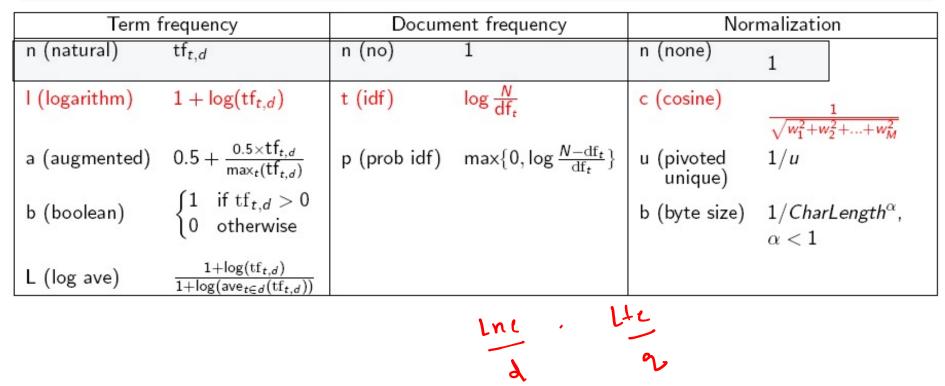
Log frequency weighting

After length normalization

term	SaS	PaP	WH	term	SaS	PaP	WH
affection	3.06	2.76	2.30	affection	0.789	0.832	0.524
jealous	2.00	1.85	2.04	jealous	0.515	0.555	0.465
gossip	1.30	0	1.78	gossip	0.335	0	0.405
wuthering	0	0	2.58	wuthering	0	0	0.588

cos(SaS,PaP) ≈ 0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 ≈ 0.94 cos(SaS,WH) ≈ 0.79 cos(PaP,WH) ≈ 0.69 Why do we have cos(SaS,PaP) > cos(SaS,WH)?

tf-idf weighting has many variants



Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation <u>ddd.qqq</u>, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Query: logarithmic tf (I in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example: Inc.ltc

Document: *car insurance auto insurance* Query: *best car insurance*

Term	Query					Document				Pro d	
	tf- raw	tf-wt	df	idf	wt	n'liz e	tf-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53
Exercise: what is <i>N</i> , the number of docs?											

Doc Vector length = $\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$

Score = 0+0+0.27+0.53 = 0.8

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Points to note

- A document may have a high cosine similarity score for a query, even if it does not contain all terms in the query
- How to speedup the vector space retrieval?
 - Can store the inverse document frequency (e.g., N/df_t) at the head of the postings list for term t
 - Store the term-frequency (e.g., tf_{t,d}) in each postings entry of the postings list for term t
 - For a multi-word query, the postings lists of the various query terms can even be traversed concurrently