
Introduction to Information Retrieval

Introduction to

Information Retrieval

Lectures 7: Dictionaries and tolerant retrieval

Introduction to Information Retrieval

Dictionary
§ Given a query and an inverted index, first tasks:

§ Determine whether each query term exists in the
vocabulary

§ If yes, identify the pointers to the corresponding postings
lists

§ The vocabulary lookup operation uses a data
structure called dictionary.

2

Introduction to Information Retrieval

Dictionary data structures for inverted
indexes
§ The dictionary data structure stores the term

vocabulary, document frequency, pointers to each
postings list … in what data structure?

Sec. 3.1

3

Introduction to Information Retrieval

A naïve dictionary
§ An array of struct:

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

§ How do we store a dictionary in memory efficiently?
§ How do we quickly look up elements at query time?

Sec. 3.1

4

Introduction to Information Retrieval

Dictionary data structures
§ Two main choices:

§ Hashtables
§ Trees

§ Some IR systems use hashtables, some trees

Sec. 3.1

5

Introduction to Information Retrieval

Hashtables
§ Each vocabulary term is hashed to an integer over a

large enough space where collisions are unlikely
§ (We assume you’ve seen hashtables before)

§ Pros:
§ Lookup is faster than for a tree: O(1)

§ Cons:
§ No easy way to find minor variants (judgment/judgement)

since they could be hashed to very different indexes:
§ No easy way to handle wild-card queries / prefix search
§ If vocabulary keeps growing, need to occasionally do the

expensive operation of rehashing everything

Sec. 3.1

6

Introduction to Information Retrieval

Trees
§ Simplest: binary tree

§ More usual: B-trees

7

Introduction to Information Retrieval

Root
a-m n-z

a-hu hy-m n-sh si-z

aa
rd
va
rk

hu
yg
en
s

si
ck
le

zy
go
t

Tree: binary tree

Sec. 3.1

8

Each internal node
is a binary test,
based on which the
search proceeds to
either the left or
the right subtree

Introduction to Information Retrieval

Tree: B-tree

§ Definition: Every internal nodel has a number of children
in the interval [a,b] where a, b are appropriate natural
numbers, e.g., [2,4].

a-hu
hy-m

n-z

Sec. 3.1

9

Introduction to Information Retrieval

Trees
§ Trees require a standard ordering of characters and hence

strings … but we typically have one

§ Pros:
§ Solves the prefix problem (terms starting with hyp)

§ Cons:
§ Slower: O(log M) [and this requires balanced tree]
§ Rebalancing binary trees is expensive

§ But B-trees mitigate the rebalancing problem

Sec. 3.1

10

Introduction to Information Retrieval

WILD-CARD QUERIES

11

Introduction to Information Retrieval

Dictionary data structures Summary
§ Two main choices: Hashtables, Trees
§ Some IR systems use hashtables, some trees

§ Hashtables:
§ Pros: O(1) for large enough table space.
§ Cons: 1) minor mistakes in query, 2) wildcard search hard. 3)

as vocab grows, you may need to rehash everything.

§ Trees:
§ Simplest: binary Search Tree
§ More general/useful: B-Tree, solves prefix problem. O(logM)

Sec. 3.1

12

Introduction to Information Retrieval

Wild-card queries: *
§ mon*: find docs having any word beginning with

“mon”
§ Why wild-card queries?

§ Users may not be sure of a spelling
§ Users may want to match multiple variants of a term, e.g.,

query judicia* for matching both judicial and judiciary

§ Types of wild-card queries
§ Trailing wild-card queries, e.g., mon*
§ Leading wild-card queries, e.g., *mon
§ General wild-card queries, e.g., s*dney, fas*in*te

§ Key challenge: which dictionary terms match a wild-
card query? 13

Introduction to Information Retrieval

Trailing Wild-card queries

§ Trailing wild-card queries (mon*) easier
§ Use a binary tree (or B-tree) over the dictionary:
§ Retrieve all dictionary words in range: mon ≤ w < moo
§ Then process postings lists of all such words

Sec. 3.2

14

Introduction to Information Retrieval

Leading Wild-card queries

§ *mon: find words ending in “mon”: slightly harder
than trailing wild-card queries

§ Maintain an additional B-tree for terms backwards
(reverse B-tree)
§ Each root-to-leaf path corresponds to a term in the

dictionary written backwards
§ Can retrieve all words in range: nom ≤ w < non.

Sec. 3.2

15

Introduction to Information Retrieval

Query processing
§ At this point, we have an enumeration of all terms in

the dictionary that match the wild-card query.
§ We still have to look up the postings for each

enumerated term.

Sec. 3.2

16

Exercise: from what we have discussed, how can we
enumerate all terms matching the query pro*cent ?

Introduction to Information Retrieval

B-trees handle *’s at the end of a
query term
§ How can we handle *’s in the middle of query term?

§ co*tion

§ We could look up co* AND *tion in a B-tree and
intersect the two term sets
§ Expensive

§ The solution: transform wild-card queries so that the
*’s occur at the end
§ This gives rise to the Permuterm Index.

Sec. 3.2

17

Introduction to Information Retrieval

Permuterm index
§ Introduce $ as a special symbol to mark the end of a

term (a symbol that does not appear in the text)

§ For term hello, index under:
§ hello$, ello$h, llohe, lohel, o$hell, $hello
where $ is a special symbol.
§ Various rotations of each term (augmented with $) all link

to the original vocabulary term

§ Permuterm vocabulary: set of all rotated terms in the
permuterm index

Sec. 3.2.1

18

Introduction to Information Retrieval

Handling wild-card queries with
Permuterm index
§ Given a wild-card query

§ Rotate the query so that the * symbol appears at the end
of the string

§ Look up the rotated query in the permuterm index

§ Queries:
§ X lookup on X$ X* lookup on $X*
§ *X lookup on X$* *X* lookup on X*
§ X*Y lookup on Y$X* X*Y*Z ??? Exercise!

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Sec. 3.2.1

19

Introduction to Information Retrieval

Queries having multiple wild-cards
§ fi*mo*er
§ First enumerate all dictionary terms that are in the

permuterm index of er$fi*
§ Not all such terms will have “mo” in the middle –

need to filter out mismatched terms exhaustively

20

Introduction to Information Retrieval

Permuterm query processing
§ Rotate query wild-card to the right
§ Now use B-tree lookup as before.
§ Once the permuterm index enables us to identify the

original vocabulary terms matching a wild-card
query, we can look up these terms in the usual way

§ Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Sec. 3.2.1

21

Introduction to Information Retrieval

k-gram (e.g. Bigram) indexes
§ Enumerate all k-grams (sequence of k chars)

occurring in any term
§ Use $ as a special character to denote the beginning

and end of each term

§ e.g., from text “April is the cruelest month” we get
the 2-grams (bigrams)

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,
ue,el,le,es,st,t$, m,mo,on,nt,h

Sec. 3.2.2

22

Introduction to Information Retrieval

k-gram (e.g. Bigram) indexes
§ Dictionary contains all k-grams that occur in any term

in the vocabulary

§ Maintain a second inverted index from k-grams to
dictionary terms that match each k-gram
§ Each postings list points from a k-gram to all vocabulary

terms containing that k-gram

Sec. 3.2.2

23

Introduction to Information Retrieval

Bigram index example
§ The k-gram index finds terms based on a query

consisting of k-grams (here k=2).

mo

on

among

$m mace

along

amortize

madden

among

Sec. 3.2.2

24

Introduction to Information Retrieval

Processing wild-cards
§ Query mon* can now be run as

§ $m AND mo AND on

§ Gets terms that match AND version of our wildcard
query.

§ But we’d enumerate moon.
§ Must post-filter these terms against query.
§ Surviving enumerated terms are then looked up in

the term-document inverted index.
§ Fast, space efficient (compared to permuterm).

Sec. 3.2.2

25

Introduction to Information Retrieval

Processing wild-card queries
§ As before, we must execute a Boolean query for each

enumerated, filtered term.
§ Wild-cards can result in expensive query execution

(very large disjunctions…)
§ pyth* AND prog*

§ If you encourage “laziness” people will respond!

Search
Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Sec. 3.2.2

26

Introduction to Information Retrieval

Recap
§ Dictionary Data Structures:

§ Hashtables
§ B-trees

§ Tolerant Retrieval
§ Wildcard queries
§ permuterm index
§ k-gram index
§ Spell correction contd …

27

Introduction to Information Retrieval

SPELLING CORRECTION

28

Introduction to Information Retrieval

Spell correction
§ Two principal uses

§ Correcting document(s) being indexed
§ Correcting user queries to retrieve “right” answers

§ Two main flavors:
§ Isolated word

§ Check each word on its own for misspelling: jacson
§ Will not catch typos resulting in correctly spelled words
§ e.g., from ® form

§ Context-sensitive
§ Look at surrounding words,
§ e.g., I flew form Heathrow to Narita.

Sec. 3.3

29

Introduction to Information Retrieval

Document correction
§ Needed for OCR’ed documents

§ Correction algorithms are tuned for this: rn/m
§ Can use domain-specific knowledge

§ E.g., OCR can confuse O and D more often than it would confuse O
and I

§ O and I adjacent on the QWERTY keyboard, so more likely
interchanged in typing.

§ But often we don’t change the documents and
instead fix the query-document mapping

Sec. 3.3

30

Introduction to Information Retrieval

Query mis-spellings
§ Our principal focus here

§ E.g., the query “IIT Khargapur”

§ We can either
§ Retrieve documents indexed by the correct spelling, OR
§ Return several suggested alternative queries with the

correct spelling
§ Did you mean … ?

Sec. 3.3

31

Introduction to Information Retrieval

Isolated word correction
§ Fundamental premise – there is a lexicon from which

the correct spellings come
§ Two basic choices for this

§ A standard lexicon such as
§ Webster’s English Dictionary
§ An “industry-specific” lexicon – hand-maintained

§ The lexicon of the indexed corpus
§ E.g., all words on the web
§ All names, acronyms etc.
§ (Including the mis-spellings)

Sec. 3.3.2

32

Introduction to Information Retrieval

Isolated word correction
§ Given a lexicon and a character sequence Q, return

the words in the lexicon closest to Q
§ What’s “closest”?
§ We’ll study several alternatives

§ Edit distance (Levenshtein distance)
§ Weighted edit distance
§ n-gram overlap

Sec. 3.3.2

33

Introduction to Information Retrieval

Edit distance
§ Given two strings S1 and S2, the minimum number of

operations to convert one to the other
§ Operations are typically character-level

§ Insert, Delete, Replace, (Transposition)

§ E.g., the edit distance from dof to dog is 1
§ From cat to act is 2 (Just 1 with transpose.)
§ from cat to dog is 3.

§ Generally found by dynamic programming.

Sec. 3.3.3

34

Introduction to Information Retrieval

Weighted edit distance
§ As above, but the weight of an operation depends on

the character(s) involved
§ Meant to capture OCR or keyboard errors

Example: m more likely to be mis-typed as n than as q
§ Therefore, replacing m by n is a smaller edit distance than

by q
§ This may be formulated as a probability model

§ Requires weight matrix as input
§ Modify dynamic programming to handle weights

Sec. 3.3.3

35

Introduction to Information Retrieval

Using edit distances for correction
§ Given query, first enumerate all character sequences

within a preset (weighted) edit distance (e.g., 2)
§ Intersect this set with list of “correct” words
§ Show terms you found to user as suggestions
§ Alternatively,

§ We can look up all possible corrections in our inverted
index and return all docs … slow

§ We can run with a single most likely correction

§ The alternatives disempower the user, but save a
round of interaction with the user

Sec. 3.3.4

36

Introduction to Information Retrieval

n-gram overlap
§ Enumerate all the n-grams in the query string as well

as in the lexicon
§ Use the n-gram index (recall wild-card search) to

retrieve all lexicon terms matching any of the query
n-grams

§ Variations
§ Can threshold by number of matching n-grams
§ Variants – weight by keyboard layout, etc.

Sec. 3.3.4

37

Introduction to Information Retrieval

Example with trigrams
§ Suppose the text is november

§ Trigrams are nov, ove, vem, emb, mbe, ber.

§ The query is december
§ Trigrams are dec, ece, cem, emb, mbe, ber.

§ So 3 trigrams overlap (of 6 in each term)
§ How can we turn this into a normalized measure of

overlap?

Sec. 3.3.4

38

Introduction to Information Retrieval

One option – Jaccard coefficient
§ A commonly-used measure of overlap
§ Let X and Y be two sets; then the J.C. is

§ Equals 1 when X and Y have the same elements and
zero when they are disjoint

§ X and Y don’t have to be of the same size
§ Always assigns a number between 0 and 1

§ Now threshold to decide if you have a match
§ E.g., if J.C. > 0.8, declare a match

YXYX ÈÇ /

Sec. 3.3.4

39

Introduction to Information Retrieval

lore

lore

Matching trigrams
§ Consider the query lord – we wish to identify words

matching 2 of its 3 bigrams (lo, or, rd)

lo

or

rd

alone sloth

morbid

border card

border

ardent

Standard postings “merge” will enumerate …

Adapt this to using Jaccard (or another) measure.

Sec. 3.3.4

40

Introduction to Information Retrieval

Context-sensitive spell correction

§ Consider the phrase query “flew form Heathrow”

§ We’d like the IR system to respond
Did you mean “flew from Heathrow”?

because no docs matched the query phrase.

§ Need surrounding context to catch this error

Sec. 3.3.5

41

Introduction to Information Retrieval

Context-sensitive correction
§ Query: flew form heathrow

§ We do not know which word(s) is an error.
§ First idea: retrieve dictionary terms close (in

weighted edit distance) to each query term
§ Now try all possible resulting phrases with one word

“fixed” at a time
§ flew from heathrow
§ fled form heathrow
§ flea form heathrow
§ … and so on

§ Hit-based spelling correction: Suggest the alternative
that has lots of hits.

Sec. 3.3.5

42

Introduction to Information Retrieval

Exercise
§ Suppose that for “flew form Heathrow” we have 7

alternatives for flew, 19 for form and 3 for heathrow.
How many “corrected” phrases will we enumerate in

this scheme?

Sec. 3.3.5

43

Introduction to Information Retrieval

General issues in spell correction
§ We enumerate multiple alternatives for “Did you

mean?”
§ Need to figure out which to present to the user

§ The alternative hitting most docs
§ Query log analysis

§ More generally, rank alternatives probabilistically
argmaxcorr P(corr | query)

§ From Bayes rule, this is equivalent to
argmaxcorr P(query | corr) * P(corr)

Sec. 3.3.5

45

Noisy channel Language model

Introduction to Information Retrieval

SOUNDEX

46

Introduction to Information Retrieval

Soundex
§ Class of heuristics to expand a query into phonetic

equivalents
§ Language specific – mainly for names :
§ E.g., chebyshev ® tchebycheff

§ Invented for the U.S. census … in 1918

Sec. 3.4

47

Introduction to Information Retrieval

Soundex – typical algorithm
§ Turn every token to be indexed into a 4-character

reduced form
§ Do the same with query terms
§ Build and search an index on the reduced forms

§ (when the query calls for a soundex match)

§ http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Sec. 3.4

48

Introduction to Information Retrieval

Soundex – typical algorithm
1. Retain the first letter of the word.
2. Change all occurrences of the following letters to '0'

(zero):
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

3. Change letters to digits as follows:
§ B, F, P, V ® 1
§ C, G, J, K, Q, S, X, Z ® 2
§ D,T ® 3
§ L ® 4
§ M, N ® 5
§ R ® 6

Sec. 3.4

49

Introduction to Information Retrieval

Soundex continued
4. Remove all pairs of consecutive digits.
5. Remove all zeros from the resulting string.
6. Pad the resulting string with trailing zeros and

return the first four positions, which will be of the
form <uppercase letter> <digit> <digit> <digit>.

E.g., Herman becomes H655.

Will hermann generate the same code?

Sec. 3.4

50

Introduction to Information Retrieval

Soundex
§ Soundex is the classic algorithm, provided by most

databases (Oracle, Microsoft, …)
§ How useful is soundex?
§ Not very – for information retrieval
§ Okay for “high recall” tasks (e.g., Interpol), though

biased to names of certain nationalities
§ Zobel and Dart (1996) show that other algorithms for

phonetic matching perform much better in the
context of IR

Sec. 3.4

51

Introduction to Information Retrieval

What queries can we process?
§ We have

§ Positional inverted index with skip pointers
§ Wild-card index
§ Spell-correction
§ Soundex

§ Queries such as
(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

52

