
Introduction to Information Retrieval

Introduction to

Information Retrieval

Lecture 8: Index Construction

Introduction to Information Retrieval

Announcements
§ Class Test 1: Feb 21st 8:30 am (be present from

8:20am)
§ Moodle Code: kghjvf22
§ Moodle Link: https://moodlecse.iitkgp.ac.in/moodle/
§ Course Name: CS60092_S2021_22
§ Test Instructions:

§ 50 minute test.
§ 10 minute for uploading.
§ Write and upload on moodle per question.
§ TURN ON VIDEOS. NO EXCEPTIONS. (PROCTORED)

2

https://moodlecse.iitkgp.ac.in/moodle/

Introduction to Information Retrieval

Index construction
§ How do we construct an index?
§ What strategies can we use with limited main

memory?

Ch. 4

Introduction to Information Retrieval

Hardware basics
§ Many design decisions in information retrieval are

based on the characteristics of hardware
§ We begin by reviewing hardware basics

Sec. 4.1

Introduction to Information Retrieval

Hardware basics
§ Access to data in memory is much faster than access

to data on disk.
§ Disk seeks:

§ No data is transferred from disk while the disk head is
being positioned. à takes a while for the disk head to
move to the part of the disk where data is located.

§ Therefore: Transferring one large chunk of data from disk
to memory is faster than transferring many small chunks.

§ Disk I/O is block-based: Reading and writing of entire
blocks (as opposed to smaller chunks): 8 to 256 KB.

Sec. 4.1

Introduction to Information Retrieval

Hardware basics
§ Servers used in IR systems now typically have several

GB of main memory, sometimes tens of GB.
§ Available disk space is several (2–3) orders of

magnitude larger.

Sec. 4.1

Introduction to Information Retrieval

Hardware assumptions for this lecture
§ symbol statistic value
§ s average seek time 5 ms = 5 x 10−3 s
§ b transfer time per byte 0.02 μs = 2 x 10−8 s
§ processor’s clock rate 109 s−1

§ p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)

§ size of main memory several GB
§ size of disk space 1 TB or more

Sec. 4.1

Introduction to Information Retrieval

RCV1: Our collection for this lecture
§ As an example for applying scalable index

construction algorithms, we will use the Reuters
RCV1 collection.

§ This is one year of Reuters newswire (part of 1995
and 1996)

Sec. 4.2

Introduction to Information Retrieval

A Reuters RCV1 document

Sec. 4.2

Introduction to Information Retrieval

Reuters RCV1 statistics
§ symbol statistic value
§ N documents 800,000
§ M terms (= word types) 400,000
§ non-positional postings 100,000,000 (100 Million)

Sec. 4.2

Introduction to Information Retrieval

§ Documents are parsed to extract words and these
are saved with the Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recap: Lec 1 index construction Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2

Introduction to Information Retrieval

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

§ After all documents have been
parsed, the inverted file is
sorted by terms.

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2

Introduction to Information Retrieval

Scaling index construction
§ In-memory index construction does not scale

§ Can’t stuff entire collection into memory, sort, then write
back

§ How can we construct an index for very large
collections?

§ Taking into account the hardware constraints we just
learned about . . . Memory, disk, speed, etc.

Sec. 4.2

Introduction to Information Retrieval

Sort-based index construction
§ As we build the index, we parse docs one at a time.

§ While building the index, we cannot easily exploit
compression tricks (you can, but much more complex)

§ The final postings for any term are incomplete until the end.
§ At 12 bytes per non-positional postings entry (term, doc,

freq), demands a lot of space for large collections.
§ T = 100,000,000 in the case of RCV1

§ So … we can do this in memory in 2009, but typical
collections are much larger. E.g., the New York Times
provides an index of >150 years of newswire

§ Thus: We need to store intermediate results on disk.

Sec. 4.2

Introduction to Information Retrieval

Sort using disk as “memory”?
§ Can we use the same index construction algorithm

for larger collections, but by using disk instead of
memory?

§ No: Sorting T = 100,000,000 records on disk is too
slow – too many disk seeks.

§ We need an external sorting algorithm.

Sec. 4.2

Introduction to Information Retrieval

BSBI: Blocked sort-based Indexing
(Sorting with fewer disk seeks)
§ 12-byte (4+4+4) records (term, doc, freq).
§ These are generated as we parse docs.
§ Must now sort 100M such 12-byte records by term.
§ Define a Block ~ 10M such records

§ Can easily fit a couple into memory.
§ Will have 10 such blocks to start with.

§ Basic idea of algorithm:
§ Accumulate postings for each block, sort, write to disk.
§ Then merge the blocks into one long sorted order.

Sec. 4.2

Introduction to Information Retrieval Sec. 4.2

Line 4: documents in this block (that we have just
read) parsed into termID-docID pairs

Introduction to Information Retrieval Sec. 4.2

Line 5: BSBI-INVERT involves 2 steps:
(1) sort the termID-docID pairs
(2) collect all termID–docID pairs with the same termID
into a postings list
Gives an inverted index for the block we have just read

Introduction to Information Retrieval

Sorting 10 blocks of 10M records
§ First, read each block and sort within:

§ Quicksort takes 2N ln N expected steps
§ In our case 2 x (10M ln 10M) steps

§ Exercise: estimate total time to read each block from
disk and and quicksort it.

§ 10 times this estimate – gives us 10 sorted runs of
10M records each.

Sec. 4.2

Introduction to Information Retrieval Sec. 4.2

Line 7: How to merge the blocks?

Introduction to Information Retrieval Sec. 4.2

Introduction to Information Retrieval

How to merge the sorted runs?
§ Can do binary merges, with a merge tree of log210 = 4 layers.
§ During each layer, read into memory runs in blocks of 10M,

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2

Introduction to Information Retrieval

How to merge the sorted runs?
§ But it is more efficient to do a multi-way merge, where you

are reading from all blocks simultaneously
§ Providing you read decent-sized chunks of each block into

memory and then write out a decent-sized output chunk,
then you’re not killed by disk seeks

Sec. 4.2

Introduction to Information Retrieval

Terms represented as termIDs?
§ To make index construction more efficient, we can

represent terms as termIDs
§ Each termID is a unique serial number
§ How to build the mapping from terms to termIDs?

§ On the fly while we are processing the collection; or,
§ A two-pass approach: compile the vocabulary in the first

pass and construct the inverted index in the second pass

§ Some indexing algorithms use termIDs, others
directly use the term
§ Hybrid approaches possible: map frequently occurring

terms to termIDs, rare terms directly handled
25

Introduction to Information Retrieval

Remaining problem with sort-based
algorithm
§ BSBI needs the dictionary (which grows dynamically)

in order to implement a term to termID mapping.
§ BSBI assumes that we can keep the dictionary in

memory throughout.

§ Actually, we could work with term, docID postings
instead of termID, docID postings . . .

§ . . . but then intermediate files become very large.
(We would end up with a scalable, but very slow
index construction method.)

Sec. 4.3

Introduction to Information Retrieval

SPIMI:
Single-pass in-memory indexing

§ Key idea 1: Generate separate dictionaries for each
block – no need to maintain term-termID mapping
across blocks.

§ Key idea 2: Don’t sort. Accumulate postings in
postings lists as they occur.

§ With these two ideas we can generate a complete
inverted index for each block.

§ These separate indexes can then be merged into one
big index.

Sec. 4.3

Introduction to Information Retrieval

SPIMI-Invert (to replace BSBI-Invert
step on slide 17)

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Introduction to Information Retrieval

SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Lines 8-9: We do not know how
large the postings list of a term will
be when we first encounter it, hence
allocate space for a short postings
list initially, double the space each
time it is full

Introduction to Information Retrieval

SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Line 10: Instead of first collecting all
termID–docID pairs and then
sorting them (as we did in BSBI),
SPIMI adds a posting directly to its
postings list

Introduction to Information Retrieval

SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Lines 11: Sort the terms before
writing to disk since we want to write
postings lists in lexicographic order
to facilitate the final merging step

Introduction to Information Retrieval

SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Lines 12: When memory exhausted,
write the index of the block (which
consists of the dictionary and the
postings lists) to disk

Introduction to Information Retrieval

SPIMI-Invert: explanation
§ Instead of first collecting all termID–docID pairs and

then sorting them (as we did in BSBI), SPIMI adds a
posting directly to its postings list (line 10)

§ We do not know how large the postings list of a term
will be when we first encounter it, hence
§ allocate space for a short postings list initially,
§ double the space each time it is full (lines 8–9)

33

Introduction to Information Retrieval

SPIMI-Invert: explanation
§ When memory exhausted, write the index of the

block (which consists of the dictionary and the
postings lists) to disk (line 12)

§ Sort the terms (line 11) before writing to disk since
we want to write postings lists in lexicographic order
to facilitate the final merging step.

34

Introduction to Information Retrieval

Till now
§ Sort-based indexing

§ Naïve in-memory or in-disk inversion
§ Blocked Sort-Based Indexing (BSBI)

§ Merge sort is effective for disk-based sorting (avoid seeks!)

§ Single-Pass In-Memory Indexing (SPIMI)
§ No global dictionary

§ Generate separate dictionary for each block

§ Don’t sort postings
§ Accumulate postings in postings lists as they occur

§ Next
§ Distributed indexing using MapReduce
§ Dynamic indexing: Multiple indices, logarithmic merge 35

Introduction to Information Retrieval

DISTRIBUTED INDEXING

36

Introduction to Information Retrieval

Distributed indexing
§ For web-scale indexing:

must use a distributed computing cluster

§ Individual machines are fault-prone
§ Can unpredictably slow down or fail

§ How do we exploit such a pool of machines?

Sec. 4.4

Introduction to Information Retrieval

Web search engine data centers
§ Web search data centers (Google, Bing, Baidu)

mainly contain commodity machines.
§ Data centers are distributed around the world.
§ Estimate: Google ~1 million servers, 3 million

processors/cores (Gartner 2007)

Sec. 4.4

Introduction to Information Retrieval

Distributed indexing
§ MapReduce: a general architecture for distributed

computing
§ Maintain a master node (machine) directing the

indexing job – considered “safe”.
§ Many worker nodes, each of which can fail

§ Break up indexing into sets of (parallel) tasks.
§ Master assigns each task to an idle worker from a

pool

Sec. 4.4

Introduction to Information Retrieval

Distributed Indexing
§ In general, MapReduce breaks a large computing

problem into smaller parts by recasting it in terms of
manipulation of key-value pairs

§ For the task of indexing, a key-value pair has the
form (termID,docID)

40

Introduction to Information Retrieval

Parallel tasks
§ We will use two sets of parallel tasks

§ Parsers
§ Inverters

§ Break the input document collection into splits
§ Each split is a subset of documents (corresponding to

blocks in BSBI/SPIMI)
§ Map phase: map splits of the input data to key-value

pairs - done by parser machines
§ Reduce phase: Collect all values (here: docIDs) for a

given key (here: termID) – done by inverter machines

Sec. 4.4

Introduction to Information Retrieval

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4

Introduction to Information Retrieval

Parsers (Map phase)
§ Master assigns a split to an idle parser machine
§ Parser reads a document at a time and emits (term,

doc) pairs
§ Parser writes pairs into j partitions
§ Each partition is for a range of terms’ first letters

(called term-partition)
§ (e.g., a-f, g-p, q-z) – here j = 3.

Sec. 4.4

Introduction to Information Retrieval

Inverters (Reduce phase)
§ An inverter collects all (term,doc) pairs (= postings)

for one term-partition.
§ Sorts and writes to postings lists

§ Finally, the list of values is sorted for each key and written
to the final sorted postings list (“postings” in the figure).

Sec. 4.4

Introduction to Information Retrieval

Schema for index construction in
MapReduce
§ Schema of map and reduce functions
§ map: input → list(k, v) reduce: (k,list(v)) → output

§ Instantiation of the schema for index construction
§ map: collection → list(termID, docID)
§ reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) →

(postings list1, postings list2, …)

Sec. 4.4

Introduction to Information Retrieval

Example for index construction
§ Map:

§ d1 : C came, C c’ed.
§ d2 : C died. →
§ <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>,

<died,d2>

§ Reduce:
§ (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>,

<c’ed,(d1)>) → (<C,(d1:2,d2:1)>, <died,(d2:1)>,
<came,(d1:1)>, <c’ed,(d1:1)>)

46

Introduction to Information Retrieval

DYNAMIC INDEXING

47

Introduction to Information Retrieval

Dynamic indexing
§ Up to now, we have assumed that collections are

static.
§ They rarely are:

§ Documents come in over time and need to be inserted.
§ Documents are deleted and modified.

§ This means that the dictionary and postings lists have
to be modified:
§ Postings updates for terms already in dictionary
§ New terms added to dictionary

Sec. 4.5

Introduction to Information Retrieval

Simplest approach
§ Maintain “big”main index
§ New docs go into “small” auxiliary index
§ Search across both, merge results
§ Deletions

§ Invalidation bit-vector for deleted docs
§ Filter docs output on a search result by this invalidation

bit-vector

§ Periodically, re-index into one main index

Sec. 4.5

Introduction to Information Retrieval

Issues with main and auxiliary indexes
§ Problem of frequent merges – you touch stuff a lot
§ Poor performance during merge
§ Actually:

§ Merging of the auxiliary index into the main index is efficient if we keep
a separate file for each postings list.

§ Merge is the same as a simple append.
§ But then we would need a lot of files – inefficient for OS.

§ Assumption for the rest of the lecture: The index is one big file.
§ In reality: Use a scheme somewhere in between (e.g., split very

large postings lists, collect postings lists of length 1 in one file
etc.)

Sec. 4.5

Introduction to Information Retrieval

Logarithmic merge
§ Maintain a series of indexes, each twice as large as

the previous one
§ At any time, some of these powers of 2 are instantiated

§ Keep smallest (Z0) in memory
§ Larger ones (I0, I1, …) on disk
§ If Z0 gets too big (> n), write to disk as I0
§ or merge with I0 (if I0 already exists) as Z1
§ Either write merge Z1 to disk as I1 (if no I1)
§ Or merge with I1 to form Z2

Sec. 4.5

Introduction to Information Retrieval Sec. 4.5

Introduction to Information Retrieval

Scenarios
§ |Z0|=n, indexes = {I0, I1}

§ |Z0|=n, indexes = {I1, I2}

§ |Z0|=2n, indexes = {I1, I2}?
§ |Z1|=2n, indexes = {I2}?

53

Introduction to Information Retrieval

Further issues with multiple indexes
§ Collection-wide statistics are hard to maintain
§ E.g., when we spoke of spell-correction: which of

several corrected alternatives do we present to the
user?
§ We said, pick the one with the most hits

§ How do we maintain the top ones with multiple
indexes and invalidation bit vectors?
§ One possibility: ignore everything but the main index for

such ordering

Sec. 4.5

Introduction to Information Retrieval

Dynamic indexing at search engines
§ All the large search engines now do dynamic

indexing
§ Their indices have frequent incremental changes

§ News items, blogs, new topical web pages

§ But (sometimes/typically) they also periodically
reconstruct the index from scratch
§ Need more hardware resources
§ Query processing is then switched to the new index, and

the old index is deleted

Sec. 4.5

Introduction to Information Retrieval

Other sorts of indexes
§ Positional indexes

§ Same sort of sorting problem … just larger

§ Building character n-gram indexes:
§ As text is parsed, enumerate n-grams.
§ For each n-gram, need pointers to all dictionary terms

containing it – the “postings”.
§ Note that the same “postings entry” will arise repeatedly

in parsing the docs – need efficient hashing to keep track
of this.
§ E.g., that the trigram uou occurs in the term deciduous will be

discovered on each text occurrence of deciduous
§ Only need to process each term once

Sec. 4.5

