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Announcements
§ Class Test 1: Feb 21st 8:30 am (be present from 

8:20am)
§ Moodle Code: kghjvf22
§ Moodle Link: https://moodlecse.iitkgp.ac.in/moodle/
§ Course Name: CS60092_S2021_22
§ Test Instructions:

§ 50 minute test.
§ 10 minute for uploading.
§ Write and upload on moodle per question.
§ TURN ON VIDEOS. NO EXCEPTIONS. (PROCTORED)
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Index construction
§ How do we construct an index?
§ What strategies can we use with limited main 

memory?

Ch. 4
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Hardware basics
§ Many design decisions in information retrieval are 

based on the characteristics of hardware
§ We begin by reviewing hardware basics

Sec. 4.1
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Hardware basics
§ Access to data in memory is much faster than access 

to data on disk.
§ Disk seeks: 

§ No data is transferred from disk while the disk head is 
being positioned. à takes a while for the disk head to 
move to the part of the disk where data is located.

§ Therefore: Transferring one large chunk of data from disk 
to memory is faster than transferring many small chunks.

§ Disk I/O is block-based: Reading and writing of entire 
blocks (as opposed to smaller chunks): 8 to 256 KB.

Sec. 4.1
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Hardware basics
§ Servers used in IR systems now typically have several 

GB of main memory, sometimes tens of GB. 
§ Available disk space is several (2–3) orders of 

magnitude larger.

Sec. 4.1
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Hardware assumptions for this lecture
§ symbol statistic value
§ s average seek time 5 ms = 5 x 10−3 s
§ b transfer time per byte 0.02 μs = 2 x 10−8 s
§ processor’s clock rate 109 s−1

§ p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)

§ size of main memory several GB
§ size of disk space 1 TB or more

Sec. 4.1
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RCV1: Our collection for this lecture
§ As an example for applying scalable index 

construction algorithms, we will use the Reuters 
RCV1 collection.

§ This is one year of Reuters newswire (part of 1995 
and 1996)

Sec. 4.2
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A Reuters RCV1 document

Sec. 4.2
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Reuters RCV1 statistics
§ symbol statistic value
§ N documents 800,000
§ M terms (= word types) 400,000                
§ non-positional postings 100,000,000  (100 Million)

Sec. 4.2
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§ Documents are parsed to extract words and these 
are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recap: Lec 1 index construction Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

§ After all documents have been 
parsed, the inverted file is 
sorted by terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2
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Scaling index construction
§ In-memory index construction does not scale

§ Can’t stuff entire collection into memory, sort, then write 
back

§ How can we construct an index for very large 
collections?

§ Taking into account the hardware constraints we just 
learned about . . . Memory, disk, speed, etc.

Sec. 4.2
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Sort-based index construction
§ As we build the index, we parse docs one at a time.

§ While building the index, we cannot easily exploit 
compression tricks  (you can, but much more complex)

§ The final postings for any term are incomplete until the end.
§ At 12 bytes per non-positional postings entry (term, doc, 

freq), demands a lot of space for large collections.
§ T = 100,000,000 in the case of RCV1

§ So … we can do this in memory in 2009, but typical 
collections are much larger.  E.g., the New York Times 
provides an index of >150 years of newswire

§ Thus: We need to store intermediate results on disk.

Sec. 4.2
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Sort using disk as “memory”?
§ Can we use the same index construction algorithm 

for larger collections, but by using disk instead of 
memory?

§ No: Sorting T = 100,000,000 records on disk is too 
slow – too many disk seeks.

§ We need an external sorting algorithm.

Sec. 4.2
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BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)
§ 12-byte (4+4+4) records (term, doc, freq).
§ These are generated as we parse docs.
§ Must now sort 100M such 12-byte records by term.
§ Define a Block ~ 10M such records

§ Can easily fit a couple into memory.
§ Will have 10 such blocks to start with.

§ Basic idea of algorithm:
§ Accumulate postings for each block, sort, write to disk.
§ Then merge the blocks into one long sorted order.

Sec. 4.2
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Line 4: documents in this block (that we have just
read) parsed into termID-docID pairs



Introduction to Information Retrieval Sec. 4.2

Line 5: BSBI-INVERT involves 2 steps:
(1) sort the termID-docID pairs
(2) collect all termID–docID pairs with the same termID
into a postings list
Gives an inverted index for the block we have just read
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Sorting 10 blocks of 10M records
§ First, read each block and sort within: 

§ Quicksort takes 2N ln N expected steps
§ In our case 2 x (10M ln 10M) steps

§ Exercise: estimate total time to read each block from 
disk and and quicksort it.

§ 10 times this estimate – gives us 10 sorted runs of 
10M records each.

Sec. 4.2
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Line 7: How to merge the blocks?
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How to merge the sorted runs?
§ Can do binary merges, with a merge tree of log210 = 4 layers.
§ During each layer, read into memory runs in blocks of 10M, 

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2
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How to merge the sorted runs?
§ But it is more efficient to do a multi-way merge, where you 

are reading from all blocks simultaneously
§ Providing you read decent-sized chunks of each block into 

memory and then write out a decent-sized output chunk, 
then you’re not killed by disk seeks

Sec. 4.2
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Terms represented as termIDs?
§ To make index construction more efficient, we can 

represent terms as termIDs
§ Each termID is a unique serial number 
§ How to build the mapping from terms to termIDs?

§ On the fly while we are processing the collection; or, 
§ A two-pass approach: compile the vocabulary in the first 

pass and construct the inverted index in the second pass 

§ Some indexing algorithms use termIDs, others 
directly use the term
§ Hybrid approaches possible: map frequently occurring 

terms to termIDs, rare terms directly handled
25
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Remaining problem with sort-based 
algorithm
§ BSBI needs the dictionary (which grows dynamically) 

in order to implement a term to termID mapping.
§ BSBI assumes that we can keep the dictionary in 

memory throughout.

§ Actually, we could work with term, docID postings 
instead of termID, docID postings . . .

§ . . . but then intermediate files become very large. 
(We would end up with a scalable, but very slow 
index construction method.)

Sec. 4.3
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SPIMI: 
Single-pass in-memory indexing

§ Key idea 1: Generate separate dictionaries for each 
block – no need to maintain term-termID mapping 
across blocks.

§ Key idea 2: Don’t sort. Accumulate postings in 
postings lists as they occur.

§ With these two ideas we can generate a complete 
inverted index for each block.

§ These separate indexes can then be merged into one 
big index.

Sec. 4.3
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SPIMI-Invert (to replace BSBI-Invert
step on slide 17)

§ Merging of blocks is analogous to BSBI.

Sec. 4.3
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SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Lines 8-9: We do not know how 
large the postings list of a term will 
be when we first encounter it, hence 
allocate space for a short postings 
list initially, double the space each 
time it is full
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SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Line 10: Instead of first collecting all 
termID–docID pairs and then 
sorting them (as we did in BSBI), 
SPIMI adds a posting directly to its 
postings list
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SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Lines 11: Sort the terms before 
writing to disk since we want to write 
postings lists in lexicographic order 
to facilitate the final merging step
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SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Lines 12: When memory exhausted, 
write the index of the block (which 
consists of the dictionary and the 
postings lists) to disk
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SPIMI-Invert: explanation
§ Instead of first collecting all termID–docID pairs and 

then sorting them (as we did in BSBI), SPIMI adds a 
posting directly to its postings list (line 10) 

§ We do not know how large the postings list of a term 
will be when we first encounter it, hence 
§ allocate space for a short postings list initially, 
§ double the space each time it is full (lines 8–9) 

33
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SPIMI-Invert: explanation
§ When memory exhausted, write the index of the 

block (which consists of the dictionary and the 
postings lists) to disk (line 12) 

§ Sort the terms (line 11) before writing to disk since 
we want to write postings lists in lexicographic order 
to facilitate the final merging step. 

34
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Till now
§ Sort-based indexing

§ Naïve in-memory or in-disk inversion
§ Blocked Sort-Based Indexing (BSBI)

§ Merge sort is effective for disk-based sorting (avoid seeks!)

§ Single-Pass In-Memory Indexing (SPIMI)
§ No global dictionary

§ Generate separate dictionary for each block

§ Don’t sort postings
§ Accumulate postings in postings lists as they occur

§ Next
§ Distributed indexing using MapReduce
§ Dynamic indexing: Multiple indices, logarithmic merge 35
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DISTRIBUTED INDEXING

36
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Distributed indexing
§ For web-scale indexing:

must use a distributed computing cluster

§ Individual machines are fault-prone
§ Can unpredictably slow down or fail

§ How do we exploit such a pool of machines?

Sec. 4.4
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Web search engine data centers
§ Web search data centers (Google, Bing, Baidu) 

mainly contain commodity machines.
§ Data centers are distributed around the world.
§ Estimate: Google ~1 million servers, 3 million 

processors/cores (Gartner 2007)

Sec. 4.4
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Distributed indexing
§ MapReduce: a general architecture for distributed 

computing
§ Maintain a master node (machine) directing the 

indexing job – considered “safe”.
§ Many worker nodes, each of which can fail

§ Break up indexing into sets of (parallel) tasks.
§ Master assigns each task to an idle worker from a 

pool

Sec. 4.4
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Distributed Indexing
§ In general, MapReduce breaks a large computing 

problem into smaller parts by recasting it in terms of 
manipulation of key-value pairs

§ For the task of indexing, a key-value pair has the 
form (termID,docID)

40
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Parallel tasks
§ We will use two sets of parallel tasks

§ Parsers
§ Inverters

§ Break the input document collection into splits
§ Each split is a subset of documents (corresponding to 

blocks in BSBI/SPIMI)
§ Map phase: map splits of the input data to key-value 

pairs - done by parser machines
§ Reduce phase: Collect all values (here: docIDs) for a 

given key (here: termID) – done by inverter machines

Sec. 4.4
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Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4
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Parsers (Map phase)
§ Master assigns a split to an idle parser machine
§ Parser reads a document at a time and emits (term, 

doc) pairs
§ Parser writes pairs into j partitions
§ Each partition is for a range of terms’ first letters 

(called term-partition)
§ (e.g., a-f, g-p, q-z) – here j = 3.

Sec. 4.4
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Inverters (Reduce phase)
§ An inverter collects all (term,doc) pairs (= postings) 

for one term-partition.
§ Sorts and writes to postings lists

§ Finally, the list of values is sorted for each key and written 
to the final sorted postings list (“postings” in the figure).

Sec. 4.4
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Schema for index construction in 
MapReduce
§ Schema of map and reduce functions
§ map: input → list(k, v)     reduce: (k,list(v)) → output

§ Instantiation of the schema for index construction
§ map: collection → list(termID, docID)
§ reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → 

(postings list1, postings list2, …)

Sec. 4.4



Introduction to Information Retrieval

Example for index construction
§ Map:

§ d1 : C came, C c’ed. 
§ d2 : C died. →
§ <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>, 

<died,d2>

§ Reduce:
§ (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, 

<c’ed,(d1)>)  →  (<C,(d1:2,d2:1)>, <died,(d2:1)>, 
<came,(d1:1)>, <c’ed,(d1:1)>)

46
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DYNAMIC INDEXING

47
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Dynamic indexing
§ Up to now, we have assumed that collections are 

static.
§ They rarely are: 

§ Documents come in over time and need to be inserted.
§ Documents are deleted and modified.

§ This means that the dictionary and postings lists have 
to be modified:
§ Postings updates for terms already in dictionary
§ New terms added to dictionary

Sec. 4.5
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Simplest approach
§ Maintain “big”main index
§ New docs go into “small” auxiliary index
§ Search across both, merge results
§ Deletions

§ Invalidation bit-vector for deleted docs
§ Filter docs output on a search result by this invalidation 

bit-vector

§ Periodically, re-index into one main index

Sec. 4.5
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Issues with main and auxiliary indexes
§ Problem of frequent merges – you touch stuff a lot
§ Poor performance during merge
§ Actually:

§ Merging of the auxiliary index into the main index is efficient if we keep 
a separate file for each postings list.

§ Merge is the same as a simple append.
§ But then we would need a lot of files – inefficient for OS.

§ Assumption for the rest of the lecture: The index is one big file.
§ In reality: Use a scheme somewhere in between (e.g., split very 

large postings lists, collect postings lists of length 1 in one file 
etc.)

Sec. 4.5
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Logarithmic merge
§ Maintain a series of indexes, each twice as large as 

the previous one
§ At any time, some of these powers of 2 are instantiated

§ Keep smallest (Z0) in memory
§ Larger ones (I0, I1, …) on disk
§ If Z0 gets too big (> n), write to disk as I0
§ or merge with I0 (if I0 already exists) as Z1
§ Either write merge Z1 to disk as I1 (if no I1)
§ Or merge with I1 to form Z2

Sec. 4.5
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Scenarios
§ |Z0|=n,   indexes = {I0, I1} 

§ |Z0|=n, indexes = {I1, I2}

§ |Z0|=2n,   indexes = {I1, I2}?
§ |Z1|=2n,   indexes = {I2}?

53
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Further issues with multiple indexes
§ Collection-wide statistics are hard to maintain
§ E.g., when we spoke of spell-correction: which of 

several corrected alternatives do we present to the 
user?
§ We said, pick the one with the most hits

§ How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
§ One possibility: ignore everything but the main index for 

such ordering

Sec. 4.5
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Dynamic indexing at search engines
§ All the large search engines now do dynamic 

indexing
§ Their indices have frequent incremental changes

§ News items, blogs, new topical web pages

§ But (sometimes/typically) they also periodically 
reconstruct the index from scratch
§ Need more hardware resources
§ Query processing is then switched to the new index, and 

the old index is deleted

Sec. 4.5
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Other sorts of indexes
§ Positional indexes

§ Same sort of sorting problem … just larger

§ Building character n-gram indexes:
§ As text is parsed, enumerate n-grams.
§ For each n-gram, need pointers to all dictionary terms 

containing it – the “postings”.
§ Note that the same “postings entry” will arise repeatedly 

in parsing the docs – need efficient hashing to keep track 
of this.
§ E.g., that the trigram uou occurs in the term deciduous will be 

discovered on each text occurrence of deciduous
§ Only need to process each term once

Sec. 4.5


