
Introduction to Information Retrieval

Introduction to

Information Retrieval

Lecture 9: Index Compression

Introduction to Information Retrieval

This lecture

§ Collection statistics in more detail
§ How big are the dictionary and postings likely to be, for a given

text documents collection?

§ Dictionary compression
§ Postings compression

Ch. 5

2

Introduction to Information Retrieval

Why compression (in general)?
§ Use less disk space

§ Saves a little money

§ Keep more stuff in memory
§ Increases speed due to caching of more data

§ Increase speed of data transfer from disk to memory
§ [read compressed data | decompress] is faster than

[read uncompressed data]
§ Premise: Decompression algorithms are fast

§ True of the decompression algorithms we use

Ch. 5

3

Introduction to Information Retrieval

Why compression for inverted indexes?
§ Dictionary

§ Make it small enough to keep in main memory
§ Make it so small that you can keep some postings lists in

main memory too
§ Postings file(s)

§ Reduce disk space needed
§ Decrease time needed to read postings lists from disk
§ Large search engines keep a significant part of the postings

in memory (compression lets you keep more in memory)
§ We will devise various IR-specific compression schemes

Ch. 5

4

Introduction to Information Retrieval

Sample text collection: Reuters RCV1
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) ~400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

Sec. 5.1

5

Introduction to Information Retrieval

Observations
§ Preprocessing greatly affects the size of dictionary and

number of postings
§ Stemming, case folding, stop word removal

§ Percentage reduction can be different based on
properties of the collections
§ E.g., lemmatizer for French reduces dictionary size much more

than Porter stemmer for English

Ch. 5

6

Introduction to Information Retrieval

Index parameters vs. what we index
(details in IIR book, Table 5.1)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size
(K)

∆% cumul
%

Size (K) ∆
%

cumul
%

Size (K) ∆
%

cumul
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some
zero entries correspond to big deltas in other columns?

Sec. 5.1

7

Introduction to Information Retrieval

Lossless vs. lossy compression
§ Lossless compression: All information is preserved.

§ Lossy compression: Discard some information
§ Makes sense when the discarded information is unlikely to

be ever used by the IR system

§ Several of the preprocessing steps can be viewed as
lossy compression: case folding, stop words,
stemming, number elimination.

Sec. 5.1

8

Introduction to Information Retrieval

Vocabulary vs. collection size
§ How big is the term vocabulary?

§ That is, how many distinct words are likely to be present in
a corpus/document collection?

§ Can we assume an upper bound?
§ In practice, the vocabulary will keep growing with the

collection size

Sec. 5.1

9

Introduction to Information Retrieval

Vocabulary vs. collection size
§ Heaps’ law: M = kTb

§ M is the size of the vocabulary, T is the number of
tokens in the collection

§ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5
§ In a log-log plot of vocabulary size M vs. T, Heaps’

law predicts a line with slope about ½
§ It is the simplest possible relationship between the two in

log-log space
§ An empirical finding (“empirical law”)

Sec. 5.1

10

Introduction to Information Retrieval

Heaps’ Law
For RCV1, the dashed line

log10M = 0.49 log10T + 1.64
is the best least squares fit.
Thus, M = 101.64T0.49 so k =
101.64 ≈ 44 and b = 0.49.

Good empirical fit for
Reuters RCV1 !

For first 1,000,020 tokens,
law predicts 38,323 terms;
actually, 38,365 terms

Fig 5.1 p81

Sec. 5.1

11

Introduction to Information Retrieval

Heap’s Law suggests that
§ The size of the dictionary is quite large for large

collections

§ The dictionary continues to increase with more
documents in the collection, rather than a maximum
vocabulary size being reached

12

Introduction to Information Retrieval

Zipf’s law

§ Heaps’ law gives the vocabulary size in collections.
§ We also study the relative frequencies of terms.
§ In natural language, there are a few very frequent

terms and very many very rare terms.
§ Zipf’s law: The i-th most frequent term has

frequency proportional to 1/i .
§ cfi ∝ 1/i = K/i where K is a normalizing constant
§ cfi is collection frequency: the number of

occurrences of the term ti in the collection.

Sec. 5.1

14

Introduction to Information Retrieval

Zipf’s Law consequences
§ If the most frequent term (the) occurs cf1 times

§ then the second most frequent term (of) occurs cf1/2 times
§ the third most frequent term (and) occurs cf1/3 times …

§ Equivalent: cfi = K/i where K is a normalizing factor,
so
§ log cfi = log K - log i
§ Linear relationship between log cfi and log i

§ Another power law relationship

Sec. 5.1

15

Introduction to Information Retrieval

Zipf’s law for Reuters RCV1

16

Sec. 5.1

Introduction to Information Retrieval

Compression
§ Now, we will consider compressing the space

for the dictionary and postings
§ Basic Boolean index only
§ No study of positional indexes, etc.

§ We will consider compression schemes
§ Dictionary compression
§ Postings list compression

Ch. 5

17

Introduction to Information Retrieval

DICTIONARY COMPRESSION

Sec. 5.2

18

Introduction to Information Retrieval

Why compress the dictionary?
§ Search begins with the dictionary
§ We want to keep it in memory
§ Memory footprint: competition with other

applications
§ Embedded/mobile devices may have very little

memory
§ Even if the dictionary isn’t in memory, we want it to

be small for a fast search startup time
§ So, compressing the dictionary is important

Sec. 5.2

19

Introduction to Information Retrieval

Dictionary storage - first cut
§ Array of fixed-width entries

§ ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search
structure

20 bytes
for each
term

4 bytes each

Sec. 5.2

20

Introduction to Information Retrieval

Fixed-width terms are wasteful
§ Most of the bytes in the Term column are wasted –

we allot 20 bytes even for 1 letter terms.
§ And we still can’t handle terms with more than 20 chars

§ Written English averages ~4.5 characters/word.
§ Ave. dictionary word in English: ~8 characters

§ How do we use ~8 characters per dictionary term?

§ Short words dominate token counts but not type
average.

Sec. 5.2

21

Introduction to Information Retrieval

Compressing the term list:
Approach 1: Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

nStore dictionary as a (long) string of characters:
nPointer to next word shows end of current word
nHope to save up to 60% of dictionary space.

Sec. 5.2

22

Introduction to Information Retrieval

Space for dictionary as a string
§ 4 bytes per term for Freq.
§ 4 bytes per term for pointer to Postings.
§ 3 bytes per term pointer
§ Avg. 8 bytes per term in term string
§ 400K terms x 19 Þ 7.6 MB (against 11.2MB for fixed

width)

ü Now avg. 11
ý bytes/term,
þ not 20.

Sec. 5.2

23

Introduction to Information Retrieval

Approach 2: Blocking
§ Store pointers to every k-th term string.

§ Example below: k=4.

§ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

ü Save 9 bytes
ý on 3
þ pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2

24

Introduction to Information Retrieval

Blocking
§ Group terms into blocks, each having k terms
§ Store a term pointer only for first term of each block
§ Store the length of each term as one additional byte

at the beginning of each term
§ Search for terms in the compressed dictionary

§ Locate the term’s block by binary search
§ Then locate term’s position within the block by linear

search within the block

§ By increasing block size k: tradeoff between better
compression and speed of term lookup

Sec. 5.2

25

Introduction to Information Retrieval

Net saving
§ Example for block size k = 4
§ Where we used 3 bytes/pointer without blocking

§ 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Saved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2

26

Introduction to Information Retrieval

Dictionary search without blocking

§ Assuming each
dictionary term equally
likely in query (not really
so in practice!), average
number of comparisons
= (1+2·2+4·3+4)/8 ~2.6

Sec. 5.2

Exercise: what if the frequencies
of query terms were non-uniform
but known, how would you
structure the dictionary search
tree?

27

Introduction to Information Retrieval

Dictionary search with blocking

§ Binary search down to 4-term block;
§ Then linear search through terms in block.

§ Blocks of 4 (binary tree), avg. =
(1+2·2+2·3+2·4+5)/8 = 3 compares

Sec. 5.2

28

Introduction to Information Retrieval

Approach 3: Front coding
§ Front-coding:

§ Sorted words commonly have long common prefix – store
differences only

§ (for last k-1 in a block of k)
8automata8automate9automatic10automation

®8automat*a1àe2àic3àion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2

30

Introduction to Information Retrieval

RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2

31

Introduction to Information Retrieval

POSTINGS COMPRESSION

Sec. 5.3

32

Introduction to Information Retrieval

Postings compression
§ The postings file is much larger than the dictionary,

factor of at least 10.
§ Key desideratum: store each posting compactly.
§ A posting for our purposes is a docID.
§ For Reuters (800,000 documents), we would use 32

bits per docID when using 4-byte integers.
§ Alternatively, we can use log2 800,000 ≈ 20 bits per

docID.
§ Our goal: use far fewer than 20 bits per docID.

Sec. 5.3

33

Introduction to Information Retrieval

Postings: two conflicting forces
§ A term like arachnocentric occurs in maybe one doc

out of a million – we would like to store this posting
using log2 1M ~ 20 bits.

§ A term like the occurs in virtually every doc, so 20
bits/posting is too expensive.

Sec. 5.3

34

Introduction to Information Retrieval

Postings file entry
§ We store the list of docs containing a term in

increasing order of docID.
§ computer: 33,47,154,159,202 …

§ Consequence: it suffices to store gaps.
§ 33,14,107,5,43 …

§ Hope: most gaps can be encoded/stored with far
fewer than 20 bits.

Sec. 5.3

35

Introduction to Information Retrieval

Three postings entries

Sec. 5.3

36

Introduction to Information Retrieval

Variable length encoding
§ Aim:

§ For arachnocentric, we will use ~20 bits/gap entry.
§ For the, we will use ~1 bit/gap entry.

§ If the average gap for a term is G, we want to use
~log2G bits/gap entry.

§ Key challenge: encode every integer (gap) with about
as few bits as needed for that integer.

§ This requires a variable length encoding
§ Variable length codes achieve this by using short

codes for small numbers

Sec. 5.3

37

Introduction to Information Retrieval

Variable Byte (VB) codes
§ For a gap value G, we want to use close to the fewest

bytes needed to hold log2 G bits
§ Begin with one byte to store G and dedicate 1 bit in it

to be a continuation bit c
§ If G ≤127, binary-encode it in the 7 available bits and

set c =1
§ Else encode G’s lower-order 7 bits and then use

additional bytes to encode the higher order bits
using the same algorithm

§ At the end set the continuation bit of the last byte to
1 (c =1) – and for the other bytes c = 0.

Sec. 5.3

38

Introduction to Information Retrieval

Example
docIDs 824 829 215406
gaps 5 214577
VB code 00000110

10111000
10000101 00001101

00001100
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Sec. 5.3

39

Introduction to Information Retrieval

Other variable unit codes
§ Instead of bytes, we can also use a different “unit of

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).
§ Variable byte alignment wastes space if you have

many small gaps – nibbles do better in such cases.
§ Variable byte codes:

§ Used by many commercial/research systems
§ Good low-tech blend of variable-length coding and

sensitivity to computer memory alignment matches (vs.
bit-level codes, which we look at next).

Sec. 5.3

40

Introduction to Information Retrieval

Variable bit-level codes: Unary code
§ Represent n as n 1s with a final 0.
§ Unary code for 3 is 1110.
§ Unary code for 40 is
110 .
§ Unary code for 80 is:
11

1111111111111111111111111111111111110

§ This doesn’t look promising, but….

41

Introduction to Information Retrieval

Gamma codes
§ We can compress better with bit-level codes

§ The Gamma code is the best known of these.

§ Represent a gap G as a pair length and offset
§ offset is G in binary, with the leading bit cut off

§ For example 13 → 1101 → 101

§ length is the length of offset
§ For 13 (offset 101), this is 3.

§ We encode length with unary code: 1110.
§ Gamma code of 13 is the concatenation of length

and offset: 1110101

Sec. 5.3

42

Introduction to Information Retrieval

Gamma code examples
number length offset g-code

0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3

43

Introduction to Information Retrieval

Gamma code properties
§ G is encoded using 2 ëlog Gû + 1 bits

§ Length of offset is ëlog Gû bits
§ Length of length is ëlog Gû + 1 bits

§ All gamma codes have an odd number of bits
§ Almost within a factor of 2 of best possible, log2 G

§ Gamma code is uniquely prefix-decodable, like VB
§ Gamma code can be used for any distribution
§ Gamma code is parameter-free

Sec. 5.3

44

Introduction to Information Retrieval

RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, g-encoded 101.0

Sec. 5.3

45

Introduction to Information Retrieval

Index compression summary
§ We can now create an index for highly efficient

Boolean retrieval that is very space efficient
§ Only 4% of the total size of the collection
§ Only 10-15% of the total size of the text in the

collection
§ However, we’ve ignored positional information
§ Hence, space savings are less for indexes used in

practice
§ But techniques substantially the same.

Sec. 5.3

46

