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Introduction

Why are we concerned about Semantics?
In IR, similarity between query and document ideally should take their
“true meaning” into account.

In the past: tf-idf based, VSM-based.
Example: query “fall colors” or “colors of fall” should match
documents about Fall season (not the verb fall, rainfall)

What is Semantics?
The study of meaning: Relation between symbols and their groundings.
John told Mary that the train moved out of the station at 3 o’clock.
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Computational Semantics

Computational Semantics
How do you represent meaning of natural language words, phrases,
sentences?
How do you reason with them?

Generally two categories of methods:
Formal Semantics: Precise mathematical models of the relations
between natural language and the world.
John chases a bat → ∃x[bat(x)∧ chase(john,x)]
Distributional Semantics: Using statistical patterns of human
written documents/corpora to extract semantics.

Combining Logical and Distributional semantics - https://
aclanthology.org/J16-4007 (Beltagy et al. 2016)
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Distributional Hypothesis

Distributional Hypothesis: Basic Intuition
“The meaning of a word is its use in language.” (Wittgenstein,

1953)
“You know a word by the company it keeps.” (Firth, 1957)

→ Semantically similar words tend to have similar distributional patterns.

Example

These surrounding words will represent banking
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Distributional Semantic Models (DSMs)

Computational models that build contextual semantic repesentations
from corpus data

DSMs are models for semantic representations
▶ The semantic content is represented by a vector
▶ Vectors are obtained through the statistical analysis of the linguistic

contexts of a word
Alternative names

▶ corpus-based semantics
▶ statistical semantics
▶ geometrical models of meaning
▶ vector semantics
▶ word space models
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Distributional Semantics: The general intuition

Distributions are vectors in a multidimensional semantic space, that
is, objects with a magnitude and a direction.
The semantic space has dimensions which correspond to possible
contexts, as gathered from a given corpus.
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Building a DSM step-by-step

The “linguistic” steps
Pre-process a corpus (to define targets and contexts)

⇓
Select the targets and the contexts

(a) Word × Word (b) Word × Document

Somak Aditya (IIT Kharagpur) Distributional Semantics and Word Embeddings - Part ILecture 15 7 / 27



Building a DSM step-by-step

The “linguistic” steps
Pre-process a corpus (to define targets and contexts)

⇓
Select the targets and the contexts

The “mathematical” steps
Count the target-context co-occurrences

⇓
Build the distributional matrix

⇓
Reduce the matrix dimensions (optional)

⇓
Compute the vector distances on the (reduced) matrix
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Many design choices

General Questions
How do the rows (words, ...) relate to each other?
How do the columns (contexts, documents, ...) relate to each other?
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Word Vectors

At one level, it is simply a vector of weights.

In a simple 1-of-N (or ‘one-hot’) encoding every element in the vector
is associated with a word in the vocabulary.
The encoding of a given word is the vector in which the
corresponding element is set to one, and all other elements are zero.

One-hot representation
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Word Vectors - One-hot Encoding

Suppose our vocabulary has only five words: King, Queen, Man,
Woman, and Child.
We could encode the word ‘Queen’ as:
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Limitations of One-hot encoding

Word vectors are not comparable
Using such an encoding, there is no meaningful comparison we can make
between word vectors other than equality testing.
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Word2Vec – A distributed representation

Distributional representation – word embedding?
Any word wi in the corpus is given a distributional representation by an
embedding

wi ∈ Rd

i.e., a d−dimensional vector, which is mostly learnt!

Somak Aditya (IIT Kharagpur) Distributional Semantics and Word Embeddings - Part ILecture 15 13 / 27



Word2Vec – A distributed representation

Distributional representation – word embedding?
Any word wi in the corpus is given a distributional representation by an
embedding

wi ∈ Rd

i.e., a d−dimensional vector, which is mostly learnt!

Somak Aditya (IIT Kharagpur) Distributional Semantics and Word Embeddings - Part ILecture 15 13 / 27



Distributional Representation

Take a vector with several hundred dimensions (say 1000).
Each word is represented by a distribution of weights across those
elements.
So instead of a 1-to-1 mapping between an element in the vector and
a word, the representation of a word is spread across all elements of
the vector, and
Each element in the vector contributes to the definition of many
words.
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Distributional Representation: Illustration
If we label the dimensions in a hypothetical word vector (there are no such
pre-assigned labels in the algorithm of course), it might look a bit like this:

Such a vector comes to represent in some abstract way the ‘meaning’ of
a word
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Word Embeddings

d typically in the range 50 to 1000
Similar words should have similar embeddings

SVD can also be thought of as an embedding method
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Reasoning with Word Vectors

It has been found that the learned word representations in fact capture
meaningful syntactic and semantic regularities in a very simple way.

Specifically, the regularities are observed as constant vector offsets
between pairs of words sharing a particular relationship.

Case of Singular-Plural Relations
If we denote the vector for word i as xi , and focus on the singular/plural
relation, we observe that

xapple −xapples ≈ xcar −xcars ≈ xfamily −xfamilies ≈ xcar −xcars

and so on.
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Reasoning with Word Vectors

Perhaps more surprisingly, we find that this is also the case for a variety of
semantic relations.
Good at answering analogy questions
a is to b, as c is to ?
man is to woman as uncle is to ? (aunt)

A simple vector offset method based on cosine distance shows the relation.
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Vcctor Offset for Gender Relation
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Vcctor Offset for Singular-Plural Relation
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Encoding Other Dimensions of Similarity

Analogy Testing

Somak Aditya (IIT Kharagpur) Distributional Semantics and Word Embeddings - Part ILecture 15 21 / 27



Analogy Testing
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Country-capital city relationships
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More Analogy Questions
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Element Wise Addition

We can also use element-wise addition of vector elements to ask questions
such as ‘German + airlines’ and by looking at the closest tokens to the
composite vector come up with impressive answers:
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Learning Word Vectors

Basic Idea

Instead of capturing co-occurrence counts directly, predict (using)
surrounding words of every word.
Code as well as word-vectors: https://code.google.com/p/word2vec/
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Two Variations: CBOW and Skip-grams
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