Link analysis: PageRank

Web search results: desired

- List of webpages / websites ranked according to
- Relevance to query
- Importance / trustworthiness of websites - centrality
- Location / time of query
- Recency of page
- ... and many other factors

Node centrality in Web

- Web graph:
- Nodes are webpages
- Edges are hyperlinks (directed)
- We already discussed one algorithm for computing node centrality on the Web graph: HITS
- In this lecture, we see the most popular algorithm for node centrality on the Web

PAGERANK ALGORITHM

PageRank

- By Larry Page and Sergey Brin
- PageRank of a page
- Just one of many factors used by Google to rank pages
- Independent of query
- Problem in measuring importance by indegree
- Not all in-links are same
- How important are those pages which link to page p ?

Idea of PageRank

- PR of page p is a function of the PR of pages which link to p

$\operatorname{PR}(p)$ is a function of $\operatorname{PR}(\mathrm{a})$ and $\operatorname{PR}(\mathrm{b})$
- If page q links to 3 pages, q contributes $P R(q) / 3$ to the PR of each of those 3 pages

- Iterative algorithm, multiple iterations needed until convergence (similar to HITS)

PageRank computation

/* initialization */
for all nodes u in G : $d(u) \leftarrow 1 / N$, where $N=$ \#nodes
for all nodes u in $G: P R(u) \leftarrow d(u)$
/* iteration */
do until $P R$ vector converges
for all nodes u in G for all nodes v that links to u

$$
\begin{aligned}
t & =\Sigma P R(v) / \text { out-degree }(v) \\
P R(u) & \leftarrow a * t+(1-a) * d(u)
\end{aligned}
$$

normalize scores
check for convergence end

$$
t=P R(v 1) / 3+P R(v 2) / 1+P R(v 3) / 4
$$

Theoretical basis of PageRank

- Random surfer model
- Start at a random node
- Execute a random walk on Web graph

- At each step, proceed from current node u to a randomly chosen node that u links to
- Random walk may reach a dead end
- Teleport: jump to any random node with probability $1 / \mathrm{N}$

Theoretical basis of PageRank

- Random surfer model
- Start at a random node, and repeat this process:
- At a node with no outgoing links (dead end), teleport
- At a node that has outgoing links
- Follow standard random walk with probability a where $0<a<1$
- Teleport with probability (1-a)
- Standard value of a: 0.85
- Nodes visited more frequently in this random walk are web-pages with higher PR

Theoretical basis of PageRank

- The random walk defines a Markov chain
- A discrete time stochastic process following Markov property (next state depends only on current state)
- N states corresponding to the N nodes; the walk/Markov chain is at one of the states at any given time-step
- $N \times N$ transition probability matrix $P: P_{i j}$ is the probability that state at next time-step is j, given current state is i

$$
\forall i, j, P_{i j} \in[0,1] \quad \forall i, \sum_{j=1}^{N} P_{i j}=1
$$

Toy example of transition probability

 matrix

Toy example of transition probability

 matrix

- P is a stochastic matrix
- Every element is in [0, 1]
- Sum of every row is 1
- Largest eigenvalue is 1
- Has a principal left eigenvector corresponding to its largest eigenvalue

Transition matrix for random surfer

- How to derive the transition matrix for the random surfer on the Web graph?
- Adjacency matrix of Web graph
- $A_{i j}=1$ if there is a hyperlink from page i to page j
- $A_{i j}=0$ otherwise
- Derive transition matrix P of Markov chain from A

Transition matrix for random surfer

- Derive transition matrix P of Markov chain from A
- If a row of A has no 1 's, replace each element by $1 / N$
- For all other rows: divide each 1 by the number of 1 's in the row
- Multiply the resulting matrix by a
- Add (1-a)/N to every entry of the resulting matrix

Example: Mini web graph

$$
\begin{array}{r}
\\
\mathbf{P} \\
\\
\\
\\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Example: Fixing sinks \& teleporting

$$
\begin{gathered}
\overline{\mathbf{P}}=\left(\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \\
\overline{\overline{\mathbf{P}}}=\alpha \overline{\mathbf{P}}+(1-\alpha) \mathbf{e e}^{T} / n=\left(\begin{array}{cccccc}
1 / 60 & 7 / 15 & 7 / 15 & 1 / 60 & 1 / 60 & 1 / 60 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
19 / 60 & 19 / 60 & 1 / 60 & 1 / 60 & 19 / 60 & 1 / 60 \\
1 / 60 & 1 / 60 & 1 / 60 & 1 / 60 & 7 / 15 & 7 / 15 \\
1 / 60 & 1 / 60 & 1 / 60 & 7 / 15 & 1 / 60 & 7 / 15 \\
1 / 60 & 1 / 60 & 1 / 60 & 11 / 12 & 1 / 60 & 1 / 6
\end{array}\right.
\end{gathered}
$$

Given \boldsymbol{P}, how to compute PageRank?

- Vector x (dimension M): probability distribution of surfer's position at any time
- At $t=0$: one entry in x is 1 , rest are 0
- At $t=1: x P$
- At $t=2:(x P) P=x P^{2}$
- Assume steady-state $x=\Pi$
- Then $\Pi P=\Pi=1 . \Pi$
- By definition, Π is the principal left eigenvector of P

Given \boldsymbol{P}, how to compute PageRank?

- Hence PageRank scores obtained as the principal left eigenvector of P
- Corresponding to eigenvalue 1

PageRank computation

- Till now, we discussed two methods for computing PageRank

1. Compute principal left eigenvector of a stochastic matrix derived from the adjacency matrix of the graph
2. An iterative method (see slide 7)

- Several numerical methods available for computing eigenvectors of a matrix, e.g., power iteration
- Still, can be difficult for matrices of the size of the Web graph; iterative method can be more efficient

Why teleportation?

- Convergence of PageRank is guaranteed only if
- The transition probability matrix P is irreducible, i.e., all transitions have a non-zero probability
- In other words, if the graph (on which random surfing is taking place) is strongly connected
- To ensure convergence, conceptually do these:
- From nodes with out-degree 0, add an outgoing edge to every node
- Damp the walk by factor a, by adding a complete set of outgoing edges, with weight ($1-\mathrm{a}$)/N, to all nodes

Practical challenges

- All links $u \rightarrow v$ do not signify a vote for v
- E.g., links to a copyright page from all pages in a website
- Attempts to spam PageRank: link spam farms or link farms
- A target page (whose PR the spammer wants to boost)
- A number of boosting pages, which link to the target page, link to each other and also to external pages
- Hijacked links - links accumulated from pages outside the link farm

Example link farm

Figure 2: A web of good (white) and bad (black) nodes.

VARIATIONS OF PAGERANK

PageRank computation

/* initialization */
for all nodes u in $G: d(u) \leftarrow 1 / N$, where $N=$ \#nodes
for all nodes u in $G: P R(u) \leftarrow d(u)$
/* iteration */
do until $P R$ vector converges
for all nodes u in G for all nodes v that links to u

$$
\begin{array}{r}
t=\sum P R(v) / \text { out-degree }(v) \\
P R(u) \leftarrow \mathrm{a}^{*} t+(1-\mathrm{a}) * d(u)
\end{array}
$$

normalize scores
check for convergence
end

Biased PageRank

- Instead of using the uniform vector $d(u) \leftarrow 1 / N$ for all nodes u, use a non-uniform preference vector:

$$
\begin{aligned}
d(u) & =1 /|S|, \text { for all } u \varepsilon S \\
& =0 \text { otherwise }
\end{aligned}
$$

The preference vector is said to be biased towards nodes in the subset S

Biased PageRank

- Instead of using the uniform vector $d(u) \leftarrow 1 / N$ for all nodes u, use a non-uniform preference vector: $d(u)=1 /|S|$, for all $u \varepsilon S$
= 0 otherwise
- Implication for random surfer:
- With probability a, follow standard random walk
- With probability (1-a), teleport to a node in S, where the particular node in S is chosen randomly
- Ranks are biased towards nodes that are closer to nodes with a larger value in the preference vector

Topic-sensitive PageRank [Havelivala, www 2002]

- Webpages are classified into various topics (16 Open Directory Project high-level categories)
- Goal is to compute PageRank, considering a particular category of interest
- For category c_{j}
- T_{j} is the set of known websites for category c_{j}
- Runs PageRank by biasing the preference vector towards the set of known websites in T_{j}
- Expected: webpages relevant to the category of interest will be ranked higher

'TrustRank [Gyongyi, vLDB 2004]

- Goal: rank trusted pages higher, and push untrusted pages down in the rankings
- Assumes:
- Trusted (good) nodes are expected to only link to other good nodes, but this assumption is violated in the real Web
- Bad nodes will link to other bad nodes and good nodes
- Assumes a way of knowing some trusted nodes
- Run PageRank by biasing the preference vector towards the set of trusted nodes

Conclusion

- Discussed two algorithms for identifying authoritative pages in the Web
- HITS
- PageRank
- Studied the theoretical basis of PageRank - Random Surfer model
- Brief discussion on some variants of PageRank

