
Link analysis: PageRank



Web search results: desired

 List of webpages / websites ranked according to
 Relevance to query
 Importance / trustworthiness of websites - centrality
 Location / time of query
 Recency of page
 … and many other factors



Node centrality in Web

 Web graph: 
 Nodes are webpages
 Edges are hyperlinks (directed)

 We already discussed one algorithm for computing 
node centrality on the Web graph: HITS

 In this lecture, we see the most popular algorithm 
for node centrality on the Web



PAGERANK ALGORITHM



PageRank

 By Larry Page and Sergey Brin

 PageRank of a page 
 Just one of many factors used by Google to rank pages
 Independent of query

 Problem in measuring importance by indegree
 Not all in-links are same
 How important are those pages which link to page p?



Idea of PageRank

 PR of page p is a function of the PR of pages which 
link to p

 If page q links to 3 pages, q contributes PR(q)/3 to 
the PR of each of those 3 pages

 Iterative algorithm, multiple iterations needed until 
convergence (similar to HITS)
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PageRank computation
/* initialization */
for all nodes u in G: d(u)  1/N, where N = #nodes
for all nodes u in G: PR(u)  d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u)  α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end
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t = PR(v1)/3 + PR(v2)/1 + PR(v3)/4
α is a parameter; will be explained shortly



Theoretical basis of PageRank

 Random surfer model
 Start at a random node 
 Execute a random walk on Web graph
 At each step, proceed from current node u to a randomly 

chosen node that u links to

 Random walk may reach a dead end
 Teleport: jump to any random node with probability 1/N
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Theoretical basis of PageRank

 Random surfer model
 Start at a random node, and repeat this process:
 At a node with no outgoing links (dead end), teleport
 At a node that has outgoing links 

 Follow standard random walk with probability α where 0<α<1
 Teleport with probability (1-α)

 Standard value of α: 0.85

 Nodes visited more frequently in this random walk 
are web-pages with higher PR



Theoretical basis of PageRank

 The random walk defines a Markov chain
 A discrete time stochastic process following Markov 

property (next state depends only on current state)

 N states corresponding to the N nodes; the walk/Markov 
chain is at one of the states at any given time-step

 N x N transition probability matrix P : Pij is the probability 
that state at next time-step is j, given current state is i



Toy example of transition probability 
matrix



 P is a stochastic matrix
 Every element is in [0, 1]
 Sum of every row is 1
 Largest eigenvalue is 1
 Has a principal left eigenvector corresponding to its 

largest eigenvalue

Toy example of transition probability 
matrix



Transition matrix for random surfer

 How to derive the transition matrix for the random 
surfer on the Web graph?

 Adjacency matrix of Web graph
 Aij = 1 if there is a hyperlink from page i to page j
 Aij = 0 otherwise

 Derive transition matrix P of Markov chain from A



Transition matrix for random surfer

 Derive transition matrix P of Markov chain from A
 If a row of A has no 1’s, replace each element by 1/N
 For all other rows: divide each 1 by the number of 1’s in 

the row
 Multiply the resulting matrix by α
 Add (1-α)/N to every entry of the resulting matrix



Example: Mini web graph



Example: Fixing sinks & teleporting



Given P, how to compute PageRank?

 Vector x (dimension N): probability distribution of 
surfer’s position at any time
 At t = 0: one entry in x is 1, rest are 0
 At t = 1: xP
 At t = 2: (xP)P = xP2

 …

 Assume steady-state x = П
 Then ПP = П = 1.П
 By definition, П is the principal left eigenvector of P



Given P, how to compute PageRank?

 Hence PageRank scores obtained as the principal 
left eigenvector of P

 Corresponding to eigenvalue 1



PageRank computation

 Till now, we discussed two methods for computing 
PageRank
1. Compute principal left eigenvector of a stochastic matrix 

derived from the adjacency matrix of the graph
2. An iterative method (see slide 7) 

 Several numerical methods available for computing 
eigenvectors of a matrix, e.g., power iteration

 Still, can be difficult for matrices of the size of the 
Web graph; iterative method can be more efficient



Why teleportation?

 Convergence of PageRank is guaranteed only if 
 The transition probability matrix P is irreducible, i.e., all 

transitions have a non-zero probability
 In other words, if the graph (on which random surfing is 

taking place) is strongly connected

 To ensure convergence, conceptually do these:
 From nodes with out-degree 0, add an outgoing edge to 

every node
 Damp the walk by factor α, by adding a complete set of 

outgoing edges, with weight (1-α)/N, to all nodes 



Practical challenges

 All links uv do not signify a vote for v
 E.g., links to a copyright page from all pages in a website

 Attempts to spam PageRank: link spam farms or 
link farms
 A target page (whose PR the spammer wants to boost)
 A number of boosting pages, which link to the target 

page, link to each other and also to external pages
 Hijacked links – links accumulated from pages outside the 

link farm



Example link farm



VARIATIONS  OF  PAGERANK



PageRank computation
/* initialization */
for all nodes u in G: d(u)  1/N, where N = #nodes
for all nodes u in G: PR(u)  d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u)  α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end



Biased PageRank

 Instead of using the uniform vector d(u)  1/N for 
all nodes u, use a non-uniform preference vector:
d(u)  =  1 / |S|, for all u ε S

=  0 otherwise

 The preference vector is said to be biased towards 
nodes in the subset S



Biased PageRank

 Instead of using the uniform vector d(u)  1/N for 
all nodes u, use a non-uniform preference vector:
d(u)  =  1 / |S|, for all u ε S

=  0 otherwise
 Implication for random surfer:

 With probability α, follow standard random walk
 With probability (1-α), teleport to a node in S, where the 

particular node in S is chosen randomly 
 Ranks are biased towards nodes that are closer to 

nodes with a larger value in the preference vector



Topic-sensitive PageRank [Haveliwala, WWW 2002]

 Webpages are classified into various topics (16 
Open Directory Project high-level categories)

 Goal is to compute PageRank, considering a 
particular category of interest

 For category cj
 Tj is the set of known websites for category cj
 Runs PageRank by biasing the preference vector towards 

the set of known websites in Tj
 Expected: webpages relevant to the category of interest 

will be ranked higher



TrustRank [Gyongyi, VLDB 2004]

 Goal: rank trusted pages higher, and push untrusted 
pages down in the rankings

 Assumes:
 Trusted (good) nodes are expected to only link to other 

good nodes, but this assumption is violated in the real Web
 Bad nodes will link to other bad nodes and good nodes

 Assumes a way of knowing some trusted nodes
 Run PageRank by biasing the preference vector 

towards the set of trusted nodes



Conclusion

 Discussed two algorithms for identifying authoritative 
pages in the Web
 HITS
 PageRank

 Studied the theoretical basis of PageRank – Random 
Surfer model

 Brief discussion on some variants of PageRank


