
Link analysis: PageRank



Web search results: desired

 List of webpages / websites ranked according to
 Relevance to query
 Importance / trustworthiness of websites - centrality
 Location / time of query
 Recency of page
 … and many other factors



Node centrality in Web

 Web graph: 
 Nodes are webpages
 Edges are hyperlinks (directed)

 We already discussed one algorithm for computing 
node centrality on the Web graph: HITS

 In this lecture, we see the most popular algorithm 
for node centrality on the Web



PAGERANK ALGORITHM



PageRank

 By Larry Page and Sergey Brin

 PageRank of a page 
 Just one of many factors used by Google to rank pages
 Independent of query

 Problem in measuring importance by indegree
 Not all in-links are same
 How important are those pages which link to page p?



Idea of PageRank

 PR of page p is a function of the PR of pages which 
link to p

 If page q links to 3 pages, q contributes PR(q)/3 to 
the PR of each of those 3 pages

 Iterative algorithm, multiple iterations needed until 
convergence (similar to HITS)

1/3
1/3
1/3

PR(p) is a function 
of PR(a) and PR(b)

a

b

p

q

a

b

c



PageRank computation
/* initialization */
for all nodes u in G: d(u)  1/N, where N = #nodes
for all nodes u in G: PR(u)  d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u)  α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end

v1

v2

v3

u

t = PR(v1)/3 + PR(v2)/1 + PR(v3)/4
α is a parameter; will be explained shortly



Theoretical basis of PageRank

 Random surfer model
 Start at a random node 
 Execute a random walk on Web graph
 At each step, proceed from current node u to a randomly 

chosen node that u links to

 Random walk may reach a dead end
 Teleport: jump to any random node with probability 1/N
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Theoretical basis of PageRank

 Random surfer model
 Start at a random node, and repeat this process:
 At a node with no outgoing links (dead end), teleport
 At a node that has outgoing links 

 Follow standard random walk with probability α where 0<α<1
 Teleport with probability (1-α)

 Standard value of α: 0.85

 Nodes visited more frequently in this random walk 
are web-pages with higher PR



Theoretical basis of PageRank

 The random walk defines a Markov chain
 A discrete time stochastic process following Markov 

property (next state depends only on current state)

 N states corresponding to the N nodes; the walk/Markov 
chain is at one of the states at any given time-step

 N x N transition probability matrix P : Pij is the probability 
that state at next time-step is j, given current state is i



Toy example of transition probability 
matrix



 P is a stochastic matrix
 Every element is in [0, 1]
 Sum of every row is 1
 Largest eigenvalue is 1
 Has a principal left eigenvector corresponding to its 

largest eigenvalue

Toy example of transition probability 
matrix



Transition matrix for random surfer

 How to derive the transition matrix for the random 
surfer on the Web graph?

 Adjacency matrix of Web graph
 Aij = 1 if there is a hyperlink from page i to page j
 Aij = 0 otherwise

 Derive transition matrix P of Markov chain from A



Transition matrix for random surfer

 Derive transition matrix P of Markov chain from A
 If a row of A has no 1’s, replace each element by 1/N
 For all other rows: divide each 1 by the number of 1’s in 

the row
 Multiply the resulting matrix by α
 Add (1-α)/N to every entry of the resulting matrix



Example: Mini web graph



Example: Fixing sinks & teleporting



Given P, how to compute PageRank?

 Vector x (dimension N): probability distribution of 
surfer’s position at any time
 At t = 0: one entry in x is 1, rest are 0
 At t = 1: xP
 At t = 2: (xP)P = xP2

 …

 Assume steady-state x = П
 Then ПP = П = 1.П
 By definition, П is the principal left eigenvector of P



Given P, how to compute PageRank?

 Hence PageRank scores obtained as the principal 
left eigenvector of P

 Corresponding to eigenvalue 1



PageRank computation

 Till now, we discussed two methods for computing 
PageRank
1. Compute principal left eigenvector of a stochastic matrix 

derived from the adjacency matrix of the graph
2. An iterative method (see slide 7) 

 Several numerical methods available for computing 
eigenvectors of a matrix, e.g., power iteration

 Still, can be difficult for matrices of the size of the 
Web graph; iterative method can be more efficient



Why teleportation?

 Convergence of PageRank is guaranteed only if 
 The transition probability matrix P is irreducible, i.e., all 

transitions have a non-zero probability
 In other words, if the graph (on which random surfing is 

taking place) is strongly connected

 To ensure convergence, conceptually do these:
 From nodes with out-degree 0, add an outgoing edge to 

every node
 Damp the walk by factor α, by adding a complete set of 

outgoing edges, with weight (1-α)/N, to all nodes 



Practical challenges

 All links uv do not signify a vote for v
 E.g., links to a copyright page from all pages in a website

 Attempts to spam PageRank: link spam farms or 
link farms
 A target page (whose PR the spammer wants to boost)
 A number of boosting pages, which link to the target 

page, link to each other and also to external pages
 Hijacked links – links accumulated from pages outside the 

link farm



Example link farm



VARIATIONS  OF  PAGERANK



PageRank computation
/* initialization */
for all nodes u in G: d(u)  1/N, where N = #nodes
for all nodes u in G: PR(u)  d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u)  α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end



Biased PageRank

 Instead of using the uniform vector d(u)  1/N for 
all nodes u, use a non-uniform preference vector:
d(u)  =  1 / |S|, for all u ε S

=  0 otherwise

 The preference vector is said to be biased towards 
nodes in the subset S



Biased PageRank

 Instead of using the uniform vector d(u)  1/N for 
all nodes u, use a non-uniform preference vector:
d(u)  =  1 / |S|, for all u ε S

=  0 otherwise
 Implication for random surfer:

 With probability α, follow standard random walk
 With probability (1-α), teleport to a node in S, where the 

particular node in S is chosen randomly 
 Ranks are biased towards nodes that are closer to 

nodes with a larger value in the preference vector



Topic-sensitive PageRank [Haveliwala, WWW 2002]

 Webpages are classified into various topics (16 
Open Directory Project high-level categories)

 Goal is to compute PageRank, considering a 
particular category of interest

 For category cj
 Tj is the set of known websites for category cj
 Runs PageRank by biasing the preference vector towards 

the set of known websites in Tj
 Expected: webpages relevant to the category of interest 

will be ranked higher



TrustRank [Gyongyi, VLDB 2004]

 Goal: rank trusted pages higher, and push untrusted 
pages down in the rankings

 Assumes:
 Trusted (good) nodes are expected to only link to other 

good nodes, but this assumption is violated in the real Web
 Bad nodes will link to other bad nodes and good nodes

 Assumes a way of knowing some trusted nodes
 Run PageRank by biasing the preference vector 

towards the set of trusted nodes



Conclusion

 Discussed two algorithms for identifying authoritative 
pages in the Web
 HITS
 PageRank

 Studied the theoretical basis of PageRank – Random 
Surfer model

 Brief discussion on some variants of PageRank


