Link analysis: PageRank

Web search results: desired

List of webpages / websites ranked according to

- Relevance to query
- Importance / trustworthiness of websites centrality
- Location / time of query
- Recency of page
- □ ... and many other factors

Node centrality in Web

- Web graph:
 - Nodes are webpages
 - Edges are hyperlinks (directed)
- We already discussed one algorithm for computing node centrality on the Web graph: HITS
- In this lecture, we see the most popular algorithm for node centrality on the Web

PAGERANK ALGORITHM

PageRank

- By Larry Page and Sergey Brin
- PageRank of a page
 - Just one of many factors used by Google to rank pages
 - Independent of query
- Problem in measuring importance by indegree
 Not all in-links are same
 How important are those pages which link to page no
 - How important are those pages which link to page p?

Idea of PageRank

PR of page p is a function of the PR of pages which link to p
PR(p) is a function

of PR(a) and PR(b)

1/3

1/3

If page *q* links to 3 pages, *q* contributes *PR(q)/3* to the PR of each of those 3 pages

b

 Iterative algorithm, multiple iterations needed until convergence (similar to HITS)

PageRank computation

/* initialization */

for all nodes u in G: $d(u) \leftarrow 1/N$, where N = # nodes for all nodes u in G: $PR(u) \leftarrow d(u)$ /* iteration */ do until *PR* vector converges for all nodes u in G for all nodes ν that links to μ $t = \Sigma PR(v) / \text{out-degree}(v)$ $PR(u) \leftarrow a * t + (1 - a) * d(u)$ v3 normalize scores check for convergence t = PR(v1)/3 + PR(v2)/1 + PR(v3)/4 α is a parameter; will be explained shore end

U

Theoretical basis of PageRank

- Random surfer model
 - Start at a random node
 - Execute a random walk on Web graph

- At each step, proceed from current node *u* to a randomly chosen node that *u* links to
- Random walk may reach a dead end
 Teleport: jump to any random node with probability 1/N

Theoretical basis of PageRank

Random surfer model

- Start at a random node, and repeat this process:
- □ At a node with no outgoing links (dead end), teleport
- At a node that has outgoing links
 - Follow standard random walk with probability a where 0<a<1
 - Teleport with probability (1-a)
- Standard value of a: 0.85

 Nodes visited more frequently in this random walk are web-pages with higher PR

Theoretical basis of PageRank

- The random walk defines a Markov chain
 - A discrete time stochastic process following Markov property (next state depends only on current state)
 - N states corresponding to the N nodes; the walk/Markov chain is at one of the states at any given time-step
 - $N \ge N \ge N$ transition probability matrix $P \ge P_{ij}$ is the probability that state at next time-step is j, given current state is i

N

$$\forall i, j, P_{ij} \in [0, 1] \qquad \forall i, \sum_{i=1}^{n} P_{ij} = 1.$$

Toy example of transition probability matrix

Toy example of transition probability matrix

- *P* is a stochastic matrix
 - □ Every element is in [0, 1]
 - Sum of every row is 1
 - Largest eigenvalue is 1
 - Has a principal left eigenvector corresponding to its largest eigenvalue

Transition matrix for random surfer

- How to derive the transition matrix for the random surfer on the Web graph?
- Adjacency matrix of Web graph
 A_{ij} = 1 if there is a hyperlink from page *i* to page *j* A_{ij} = 0 otherwise
- Derive transition matrix P of Markov chain from A

Transition matrix for random surfer

- Derive transition matrix P of Markov chain from A
 - □ If a row of *A* has no 1's, replace each element by 1/N
 - For all other rows: divide each 1 by the number of 1's in the row
 - Multiply the resulting matrix by a
 - □ Add (1-a)/N to every entry of the resulting matrix

Example: Mini web graph

Example: Fixing sinks & teleporting

$$\bar{\mathbf{P}} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\bar{\mathbf{P}} = \alpha \bar{\mathbf{P}} + (1 - \alpha) \mathbf{e} \mathbf{e}^T / n = \begin{pmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15 \\ 1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/6 \end{pmatrix}$$

Given P, how to compute PageRank?

- Vector x (dimension N): probability distribution of surfer's position at any time
 - At t = 0: one entry in x is 1, rest are 0

• At
$$t = 1$$
: xP

• At
$$t = 2$$
: $(xP)P = xP^2$

• ...

- Assume steady-state $x = \Pi$ • Then $\Pi P = \Pi = 1.\Pi$
 - □ By definition, /7 is the principal left eigenvector of P

Given P, how to compute PageRank?

- Hence PageRank scores obtained as the principal left eigenvector of P
- Corresponding to eigenvalue 1

PageRank computation

- Till now, we discussed two methods for computing PageRank
 - 1. Compute principal left eigenvector of a stochastic matrix derived from the adjacency matrix of the graph
 - 2. An iterative method (see slide 7)
- Several numerical methods available for computing eigenvectors of a matrix, e.g., power iteration
- Still, can be difficult for matrices of the size of the Web graph; iterative method can be more efficient

Why teleportation?

- Convergence of PageRank is guaranteed only if
 - The transition probability matrix P is irreducible, i.e., all transitions have a non-zero probability
 - In other words, if the graph (on which random surfing is taking place) is strongly connected
- To ensure convergence, conceptually do these:
 - From nodes with out-degree 0, add an outgoing edge to every node
 - Damp the walk by factor a, by adding a complete set of outgoing edges, with weight (1-a)/N, to all nodes

Practical challenges

- All links $u \rightarrow v$ do not signify a vote for v
 - □ E.g., links to a copyright page from all pages in a website
- Attempts to spam PageRank: link spam farms or link farms
 - □ A target page (whose PR the spammer wants to boost)
 - A number of boosting pages, which link to the target page, link to each other and also to external pages
 - Hijacked links links accumulated from pages outside the link farm

Example link farm

Figure 2: A web of good (white) and bad (black) nodes.

VARIATIONS OF PAGERANK

PageRank computation

/* initialization */ for all nodes u in G: $d(u) \leftarrow 1/N$, where N = # nodes for all nodes u in G: $PR(u) \leftarrow d(u)$ /* iteration */ do until *PR* vector converges for all nodes u in G for all nodes ν that links to μ $t = \Sigma PR(v) / \text{out-degree}(v)$ $PR(u) \leftarrow a * t + (1 - a) * d(u)$ normalize scores check for convergence end

Biased PageRank

- Instead of using the uniform vector d(u) ← 1/N for all nodes u, use a non-uniform preference vector:
 d(u) = 1 / |S|, for all u ε S
 = 0 otherwise
- The preference vector is said to be biased towards nodes in the subset S

Biased PageRank

- Instead of using the uniform vector $d(u) \leftarrow 1/N$ for all nodes u, use a non-uniform preference vector: d(u) = 1/|S| for all u s S
 - d(u) = 1 / |S|, for all $u \in S$

= 0 otherwise

- Implication for random surfer:
 - With probability a, follow standard random walk
 - With probability (1-a), teleport to a node in S, where the particular node in S is chosen randomly
- Ranks are biased towards nodes that are closer to nodes with a larger value in the preference vector

Topic-sensitive PageRank [Haveliwala, WWW 2002]

- Webpages are classified into various topics (16 Open Directory Project high-level categories)
- Goal is to compute PageRank, considering a particular category of interest
- For category C_j
 - T_j is the set of known websites for category c_j
 - Runs PageRank by biasing the preference vector towards the set of known websites in T_i
 - Expected: webpages relevant to the category of interest will be ranked higher

TrustRank [Gyongyi, VLDB 2004]

- Goal: rank trusted pages higher, and push untrusted pages down in the rankings
- Assumes:
 - Trusted (good) nodes are expected to only link to other good nodes, but this assumption is violated in the real Web
 - Bad nodes will link to other bad nodes and good nodes
- Assumes a way of knowing some trusted nodes
- Run PageRank by biasing the preference vector towards the set of trusted nodes

Conclusion

- Discussed two algorithms for identifying authoritative pages in the Web
 - HITS

PageRank

- Studied the theoretical basis of PageRank Random Surfer model
- Brief discussion on some variants of PageRank