
Link analysis: PageRank

Web search results: desired

 List of webpages / websites ranked according to
 Relevance to query
 Importance / trustworthiness of websites - centrality
 Location / time of query
 Recency of page
 … and many other factors

Node centrality in Web

 Web graph:
 Nodes are webpages
 Edges are hyperlinks (directed)

 We already discussed one algorithm for computing
node centrality on the Web graph: HITS

 In this lecture, we see the most popular algorithm
for node centrality on the Web

PAGERANK ALGORITHM

PageRank

 By Larry Page and Sergey Brin

 PageRank of a page
 Just one of many factors used by Google to rank pages
 Independent of query

 Problem in measuring importance by indegree
 Not all in-links are same
 How important are those pages which link to page p?

Idea of PageRank

 PR of page p is a function of the PR of pages which
link to p

 If page q links to 3 pages, q contributes PR(q)/3 to
the PR of each of those 3 pages

 Iterative algorithm, multiple iterations needed until
convergence (similar to HITS)

1/3
1/3
1/3

PR(p) is a function
of PR(a) and PR(b)

a

b

p

q

a

b

c

PageRank computation
/* initialization */
for all nodes u in G: d(u)  1/N, where N = #nodes
for all nodes u in G: PR(u)  d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u)  α * t + (1 – α) * d(u)

normalize scores
check for convergence

end

v1

v2

v3

u

t = PR(v1)/3 + PR(v2)/1 + PR(v3)/4
α is a parameter; will be explained shortly

Theoretical basis of PageRank

 Random surfer model
 Start at a random node
 Execute a random walk on Web graph
 At each step, proceed from current node u to a randomly

chosen node that u links to

 Random walk may reach a dead end
 Teleport: jump to any random node with probability 1/N

1/3
1/3
1/3

Theoretical basis of PageRank

 Random surfer model
 Start at a random node, and repeat this process:
 At a node with no outgoing links (dead end), teleport
 At a node that has outgoing links

 Follow standard random walk with probability α where 0<α<1
 Teleport with probability (1-α)

 Standard value of α: 0.85

 Nodes visited more frequently in this random walk
are web-pages with higher PR

Theoretical basis of PageRank

 The random walk defines a Markov chain
 A discrete time stochastic process following Markov

property (next state depends only on current state)

 N states corresponding to the N nodes; the walk/Markov
chain is at one of the states at any given time-step

 N x N transition probability matrix P : Pij is the probability
that state at next time-step is j, given current state is i

Toy example of transition probability
matrix

 P is a stochastic matrix
 Every element is in [0, 1]
 Sum of every row is 1
 Largest eigenvalue is 1
 Has a principal left eigenvector corresponding to its

largest eigenvalue

Toy example of transition probability
matrix

Transition matrix for random surfer

 How to derive the transition matrix for the random
surfer on the Web graph?

 Adjacency matrix of Web graph
 Aij = 1 if there is a hyperlink from page i to page j
 Aij = 0 otherwise

 Derive transition matrix P of Markov chain from A

Transition matrix for random surfer

 Derive transition matrix P of Markov chain from A
 If a row of A has no 1’s, replace each element by 1/N
 For all other rows: divide each 1 by the number of 1’s in

the row
 Multiply the resulting matrix by α
 Add (1-α)/N to every entry of the resulting matrix

Example: Mini web graph

Example: Fixing sinks & teleporting

Given P, how to compute PageRank?

 Vector x (dimension N): probability distribution of
surfer’s position at any time
 At t = 0: one entry in x is 1, rest are 0
 At t = 1: xP
 At t = 2: (xP)P = xP2

 …

 Assume steady-state x = П
 Then ПP = П = 1.П
 By definition, П is the principal left eigenvector of P

Given P, how to compute PageRank?

 Hence PageRank scores obtained as the principal
left eigenvector of P

 Corresponding to eigenvalue 1

PageRank computation

 Till now, we discussed two methods for computing
PageRank
1. Compute principal left eigenvector of a stochastic matrix

derived from the adjacency matrix of the graph
2. An iterative method (see slide 7)

 Several numerical methods available for computing
eigenvectors of a matrix, e.g., power iteration

 Still, can be difficult for matrices of the size of the
Web graph; iterative method can be more efficient

Why teleportation?

 Convergence of PageRank is guaranteed only if
 The transition probability matrix P is irreducible, i.e., all

transitions have a non-zero probability
 In other words, if the graph (on which random surfing is

taking place) is strongly connected

 To ensure convergence, conceptually do these:
 From nodes with out-degree 0, add an outgoing edge to

every node
 Damp the walk by factor α, by adding a complete set of

outgoing edges, with weight (1-α)/N, to all nodes

Practical challenges

 All links uv do not signify a vote for v
 E.g., links to a copyright page from all pages in a website

 Attempts to spam PageRank: link spam farms or
link farms
 A target page (whose PR the spammer wants to boost)
 A number of boosting pages, which link to the target

page, link to each other and also to external pages
 Hijacked links – links accumulated from pages outside the

link farm

Example link farm

VARIATIONS OF PAGERANK

PageRank computation
/* initialization */
for all nodes u in G: d(u)  1/N, where N = #nodes
for all nodes u in G: PR(u)  d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u)  α * t + (1 – α) * d(u)

normalize scores
check for convergence

end

Biased PageRank

 Instead of using the uniform vector d(u)  1/N for
all nodes u, use a non-uniform preference vector:
d(u) = 1 / |S|, for all u ε S

= 0 otherwise

 The preference vector is said to be biased towards
nodes in the subset S

Biased PageRank

 Instead of using the uniform vector d(u)  1/N for
all nodes u, use a non-uniform preference vector:
d(u) = 1 / |S|, for all u ε S

= 0 otherwise
 Implication for random surfer:

 With probability α, follow standard random walk
 With probability (1-α), teleport to a node in S, where the

particular node in S is chosen randomly
 Ranks are biased towards nodes that are closer to

nodes with a larger value in the preference vector

Topic-sensitive PageRank [Haveliwala, WWW 2002]

 Webpages are classified into various topics (16
Open Directory Project high-level categories)

 Goal is to compute PageRank, considering a
particular category of interest

 For category cj
 Tj is the set of known websites for category cj
 Runs PageRank by biasing the preference vector towards

the set of known websites in Tj
 Expected: webpages relevant to the category of interest

will be ranked higher

TrustRank [Gyongyi, VLDB 2004]

 Goal: rank trusted pages higher, and push untrusted
pages down in the rankings

 Assumes:
 Trusted (good) nodes are expected to only link to other

good nodes, but this assumption is violated in the real Web
 Bad nodes will link to other bad nodes and good nodes

 Assumes a way of knowing some trusted nodes
 Run PageRank by biasing the preference vector

towards the set of trusted nodes

Conclusion

 Discussed two algorithms for identifying authoritative
pages in the Web
 HITS
 PageRank

 Studied the theoretical basis of PageRank – Random
Surfer model

 Brief discussion on some variants of PageRank

