
Introduction to

Information Retrieval

Boolean Retrieval

Terminology
• In the context of a user interacting with an IR system
– Document: unit of retrieval
– Each document has a Doc Id
– Corpus: collection of documents
– User has information need
– User inputs a query to system
– Term: a unit of information (e.g., a word/phrase)
– Relevance of documents to query/info need

• Ad hoc retrieval task

Information Retrieval

web pages, emails, books, news stories,
scholarly papers, text messages,
Powerpoint, PDF, forum postings,
patents, tweets, question answer
postings.

What is a
document?

Some form of input by
user (an expression of
user intent) – usually
natural language text

What is a
query?

IR System

Answer

For most of this lecture

• Corpus: collection of plays of Shakespeare
• Document: an individual play
• Query: a Boolean expression having terms connected

with Boolean operators (AND, OR, NOT)

Unstructured data in 1620

• Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?

• Why is that not the answer?
– Slow (for large corpora)
– NOT Calpurnia is non-trivial
– Other operations (e.g., find the word Romans near

countrymen) not feasible
– Ranked retrieval (best documents to return)

• Later lectures
5

Sec. 1.1

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, 0 otherwise

Brutus AND Caesar BUT NOT
Calpurnia

Sec. 1.1

Incidence vectors

• So we have a 0/1 vector for each term.
• To answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented) è
bitwise AND.
– 110100 AND
– 110111 AND
– 101111 =
– 100100
(terms: O(T), Docs: O(M), Keywords: N. N*O(M))

7

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Answers to query

• Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

Capitol; Brutus killed me.

8

Sec. 1.1

Bigger collections

• Consider N = 1 million documents, each with
about 1000 words.

• Avg 6 bytes/word including
spaces/punctuation
– 6GB of data in the documents.

• Say there are M = 500K distinct terms among
these.

9

Sec. 1.1

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s and
1’s.

• But it has no more than one billion 1’s.
– matrix is extremely sparse.

• What’s a better representation?
– We only record the 1 positions.

10

Why?

Sec. 1.1

Introduction to

Information Retrieval

The Inverted Index
The key data structure underlying

modern IR

Inverted index

• For each term t, we must store a list of all
documents that contain t.
– Identify each doc by a docID, a document serial

number

• Can we use fixed-size arrays for this?

12

What happens if the word Caesar
is added to document 14?

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Inverted index
• We need variable-size postings lists
– On disk, a continuous run of postings is normal

and best
– In memory, can use linked lists or variable length

arrays
• Some tradeoffs in size/ease of insertion

13

Dictionary Postings
Sorted by docID (more later on why).

Posting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Tokenizer

Token stream Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.

Sec. 1.2

Initial stages of text processing
• Tokenization

– Cut character sequence into word tokens
• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match
• Stemming

– We may wish different forms of a root to match
• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Indexer steps: Token sequence

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

Term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Indexer steps: Sort

• Sort by terms
– And then docID

Core indexing step

Sec. 1.2

Term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
was 1
was 2
with 2
you 2

Indexer steps: Dictionary & Postings

• Multiple term entries
in a single document
are merged.

• Split into Dictionary
and Postings

• Document frequency
information is added
to dictionary.

Why frequency?
Will discuss later.

Sec. 1.2

Where do we pay in storage?

19Pointers

Terms
and

counts IR system
implementation
• How do we

index efficiently?
• How much

storage do we
need?

Sec. 1.2

Lists of
docIDs

Practical considerations

• For a practical IR system handling a huge corpus
• The dictionary will be stored in the memory
• Postings lists will be stored on disk
• Ideally, retrieve (from disk) only those postings lists

that are needed to answer a query

Introduction to

Information Retrieval

Query processing with an inverted index

Summary: Inverted Index

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

1. Tokenization
2. Normalize tokens
3. Sort tokens, docIDs
4. Add Doc Freq

The index we just built

• How do we process a query?
– Later - what kinds of queries can we process?

Brutus AND Caesar

23

Our focus

Sec. 1.3

Query processing: AND
• Consider processing the query:

Brutus AND Caesar
– Locate Brutus in the Dictionary;

• Retrieve its postings.

– Locate Caesar in the Dictionary;
• Retrieve its postings.

– “Merge” the two postings (intersect the
document sets):

24

!"#
$%

" % # !& $" &%
! " $ ' # !$ "!

()*+*,
-./,.)

Sec. 1.3

The merge

• Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

25

$%
!"#" % # !& $" &%

! " $ ' # !$ "!
()*+*,

-./,.)

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

Sec. 1.3

Intersecting two postings lists
(a “merge” algorithm)

26

Boolean queries: Exact match
• The Boolean retrieval model is being able to ask a

query that is a Boolean expression:
– Boolean Queries are queries using AND, OR and NOT

to join query terms
• Views each document as a set of words
• Is precise: document matches condition or not.

– Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades.
• Many search systems you still use are Boolean:
– Email, library catalog, Mac OS X Spotlight

27

Sec. 1.3

Boolean queries:
More general merges

• Exercise: Adapt the merge for the query:
Brutus AND NOT Caesar

• Can we still run through the merge in time
O(x+y)? What can we achieve?

28

Sec. 1.3

Query optimization
• What is the best order for query processing?
• Consider a query that is an AND of n terms.
• For each of the n terms, get its postings, then
AND them together.

Brutus

Caesar
Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar
!"

Sec. 1.3

Query optimization example

• Process in order of increasing freq:
– start with smallest set, then keep cutting further.

30

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar
Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

More general optimization

• e.g., (madding OR crowd) AND (ignoble OR
strife)

• Get doc. freq.’s for all terms.
• Estimate the size of each OR by the sum of its

doc. freq.’s (conservative).
• Process in increasing order of OR sizes.

31

Sec. 1.3

Exercise

• Recommend a query
processing order for

• Which two terms should we
process first?

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

32

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

33

Does Google use the Boolean model?
§On Google, the default interpretation of a query [w1 w2 . . .wn] is w1 AND w2 AND . .
.AND wn
§Cases where you get hits that do not contain one of the wi :

§anchor text
§page contains variant of wi (morphology, spelling correction,
synonym)
§long queries (n large)
§boolean expression generates very few hits

§Simple Boolean vs. Ranking of result set
§Simple Boolean retrieval returns matching documents in no
particular order.
§Google (and most well designed Boolean engines) rank the result
set – they rank good hits (according to some estimator of
relevance) higher than bad hits.

33

Example: WestLaw http://www.westlaw.com/
• Largest commercial (paying subscribers) legal search

service (started 1975; ranking added 1992; new
federated search added 2010)

• Tens of terabytes of data; ~700,000 users
• Majority of users still use boolean queries
• Example query:

– What is the statute of limitations in cases involving
the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM

• /3 = within 3 words, /S = in same sentence

34

Sec. 1.4

