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What is a Language Model?

An LM is 
● a probability distribution over sequence of words.
● a way to predict the next word

For a sentence S consisting of m words  
𝑆 = 𝑤1𝑤2𝑤3 …… . . 𝑤𝑚

In Language Model, we assume:
𝑃(𝑆) = 𝑃(𝑤1𝑤2𝑤3 …… . . 𝑤𝑚)

= 𝑃 𝑤! ×𝑃 𝑤" 𝑤! ×⋯×𝑃(𝑤#|𝑤#$!…𝑤!)

But How it is helpful to us?



What is a Language Model?

Using LM, we can find out
- If a sentence S1 is more likely than another S2 (conditioned on q, but ignore for
now).

For example:
● S1: Virat Kohli plays cricket for India.
● S2: plays Kohli cricket for India Virat. 
● S3: Virat Kohli plays plays for India.

Which is more likely?

Obviously S1. Hence our LM should say P(S1) > P(S2) and P(S1) > P(S3).



But, how can LM help us in IR?

Say q is “Kohli” D1: Virat Kohli plays cricket for India. D2: Virat Kohli plays plays
for India. D2: Sachin plays for India.

Using LM

● We can compute P(Di) and P(q). With some assumptions
𝑃(𝑞|𝐷%) ∝ 𝑃 𝐷% , 𝑞 = 𝑃 𝐷% 𝑃(𝑞)	

● How to compute that?
○ LM helps us learn 𝑣&!, 𝑣&", 𝑣&#, 𝑣' ∈ ℝ

(.

○ We can approximate 𝑃 𝐷% 𝑃 𝑞 ∝
)$%
& )'

)$% | )' |



n-gram Language Models

How to compute the Probability of the next word?

the students opened their ___

§ Question: How to learn a language model?
§ Answer: Learn a n-gram language model.

Definition: An n-gram is a chunk of n consecutive words. 
§ unigrams: “the”, “students”, “opened”, ”their” 
§ bigrams: “the students”, “students opened”, “opened their” 
§ trigrams: “the students opened”, “students opened their” 
§ four-grams: “the students opened their” 

Idea: Collect statistics about how frequent different n-grams are and use these to 
predict next word.

books

laptops

exams



Markov Assumption: 𝑤! depends on preceding 𝑛 − 1 words.

𝑃(𝑤"|𝑤"#$, …𝑤$) = 𝑃(𝑤"|𝑤"#$…𝑤"#!%&)

=
𝑃 𝑤", 𝑤"#$…𝑤"#!%&
𝑃(𝑤"#$…𝑤"#!%&)

Question: How do we get these n-gram and (n-1)-gram probabilities? 
Answer: By counting them in some large corpus of text!

≈
𝑐𝑜𝑢𝑛𝑡 𝑤", 𝑤"#$…𝑤"#!%&
𝑐𝑜𝑢𝑛𝑡(𝑤"#$…𝑤"#!%&)

n-gram Language Models

Prob of n-gram
Prob of n-1 gram

n-1 words



n-gram LM Model in Practice

You can build a simple trigram Language Model over a 1.7 million word 
corpus (Reuters) in a few seconds on your laptop*
today the ________



Generating text with a n-gram Language Model

You can also use a LM to generate text



n-gram Language Models

1. Markov Assumption: Probability of a word depends on previous “n” words.
What is the value of this n?

○ If n is small, then it may predict a different word. Eg: Consider S: In IPL, Virat Kohli plays cricket
for _____. For n = 5, then the predicted word may be “India” but

○ n = 7, then the predicted word may be “RCB”.
○ If n is very large, computationally extensive.

2. A word may be dependent on next words as well.
1. The word “United” has very high probability if next 3 words are “__ States of America”.



n-gram Language Models

𝑃 𝑤 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠	𝑜𝑝𝑒𝑛𝑒𝑑	𝑡ℎ𝑒𝑖𝑟) = +,-./(1/-(2./1	,42.2(	/52%6	7)
+,-./(1/-(2./1	,42.2(	/52%6)

1. The numerator may be zero. We may need to do Smoothing.
2. The denominator maybe zero for a given corpus. Say w3, w2 and w1 never cooccur in the

corpus.To solve this, we could condition on w2 alone. This is called backoff.

Problem: What if “students 
opened their 𝑤” never occurred in 
data? Then 𝑤 has probability 0!

Partial Solution: Add small 𝛿 to 
the count for every 𝑤 ∈ 𝑉. This is 
called smoothing.

Problem: What if “students 
opened their” never occurred in 
data? Then we can’t calculate the 
probability of w.

Partial Solution: Just condition on 
“opened their”. Called backoff.



Neural network Language Models

NN-based Language Models solves (some of) these problems related to n-gram 
Language Models. 

𝑆 = 𝑤1𝑤2𝑤3 ……… .𝑤𝑛

For the kth word 𝑤', we consider its Context or surrounding words (𝑤#')

We model the conditional probability:

P(wk | Context) 
using a Neural network.

But how?



Neural network Language Models

Method 1 (Fixed-Window NN)
1. Word’s probability depends on its context (but fixed 

window)
2. Each word has a fixed “continuous vector representation”
3. How to predict next word for the sentence “the students 

opened their __”?

1. Assume you have a vector for each word. Look up vector for 
each word from a “lookup table” 

2. INPUT: Concatenate vectors 𝒆 = [𝒆 𝟏 ; 𝒆 𝟐 ; 𝒆 𝟑 ; 𝒆 𝟒 ]
3. HIDDEN: 𝒉 = 𝒇 𝑾𝒆 + 𝒃𝟏 ,𝐖 ∈ ℝ𝟒𝒏×𝒅
4. OUTPUT: 7𝑦 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝑼𝒉 + 𝒃𝟐 ,𝑼 ∈ ℝ𝒅×|𝑽|

!𝑦 is the distribution over words in the vocab.

𝒉

@𝒚



Neural network Language Models (Forward Pass)

Method 1 (Fixed-Window NN)

Step 1: Look up the vector representation for each word in the context from the “Look Up 
Table”. 

Example: Consider sentence “the students opened their ____ “

Index Word Continuous Word Representation

1 the [0.6762, -0.9607, 0.3626, -0.2410, 0.6636]

200 students [0.1656, -0.1530, 0.0310, -0.3321, -0.1342]

340 opened [0.5965, 0.9143, 0.0899, 0.7702, -0.6392]

490 their [-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]



Neural network Language Models (Forward Pass)

Concatenate the word vectors as shown :

𝒆 = [𝒆 𝟏 ; 𝒆 𝟐 ; 𝒆 𝟑 ; 𝒆 𝟒 ]

Concatenated vector e is the INPUT LAYER to our Neural Network.



Neural network Language Models (Forward Pass)

Step 2: Hidden layer output “h” is calculated as:
𝒉 = 𝒇(𝑾𝒆 + 𝒃𝟏)

𝑊 = Weight matrix connecting Input Layer and Hidden Layer
𝑒 = Input Layer concatenated vector (see last slide)
𝑏1 = bias, 
𝑓 = tanh or sigmoid

HIDDEN 𝒉

INPUT 𝒆

𝑾 =?𝒃𝟏 	=?



Neural network Language Models (Forward Pass)

Step 3: Hidden to Output Layer:

𝒛 = 𝑼𝒉 + 𝒃𝟐
B𝑦 = 𝝈 𝒛

𝑈 = Weight matrix between Hidden Layer and Output Layer.
ℎ = Output of Hidden Layer calculated in the last slide
𝑏& = bias

Softmax function: !𝑦, = 𝜎 𝑧 % =
&EF
'F	&EF

, 𝑦 =< y), y*… , y + >

𝑼 =?𝒃𝟐 	=?



Neural network Language Models (Forward Pass)

In our example, the word “books” has 
the highest probability. The word 
“laptops” has 2nd highest probability.
● B𝑦-..'/ > B𝑦0123.2/

The final sentence becomes:

the students opened their books



Neural network Language Models

What did we learn? How do we infer?
- Given set of initial word vectors (lookup table), 𝜃 =< 𝑊, 𝑏, 𝑈, 𝑏2 >, we can 

predict next word.
- Hence we can predict 𝑃(𝑆). How?

But, how do we train?
- How do we learn parameters 𝜃 =< 𝑊, 𝑏, 𝑈, 𝑏2 >,?
- Using gradient Descent. What corpus? Labeled or unlabeled? Objective?
- To be covered during the lecture for word2vec.

𝑓GH(. )𝒙 C𝒚

𝜽(𝟏) = 𝜽(𝟎) − 𝜼
𝜹@𝒚
𝜹𝜽



Neural network Language Models

Points to note:
1.  Word’s probability depends on the 

fixed window context (previous or 
surrounding).

2. A word has a single vector in a table.
- Even the ones such as “apple”, “fall”.

3. Estimation is only using a 3-layer NN.



Recurrent Neural Networks (Method 2)

Recurrent Neural Networks (RNN) 
● Each word depends on all previous words in the ”sentence/paragraph”. 
● RNNs add the immediate past to the present.

Here, is a simple architecture of RNN:

the students opened



Recurrent Neural Networks

1. INPUT LAYER: 𝑥 =< 𝑥!, 𝑥", … 𝑥. > is the input. 
2. HIDDEN LAYER

1. Vertical box is a hidden unit i.e. (ht = hidden unit at timestep t). There is only one Hidden layer . 
2. The same computation is applied for t timesteps with t different words.

3. The Hidden unit at each step t has two inputs
1. ℎ&'(:	output of the previous timestep  and 
2. the input at this timestep xt.

Hidden Units

Input 
(1-hot vectors or 
dense vectors)

𝒉𝒕

𝒙𝒕



Recurrent Neural Networks

HIDDEN LAYER COMPUTATION:
- 𝒉𝒕#𝟏 and 𝒙𝒕 are “scaled” by separate weight matrices to produce 𝒉𝒕
- 𝒉𝒕 is multiplied with a weight matrix 𝑾(𝑺) ∈ ℝ𝒅×|𝑽|
- Then a 𝒔𝒐𝒇𝒕𝒎𝒂𝒙() over the vocabulary to get a prediction output 𝒚𝒕 of the next word.

ℎ𝑡 = 𝜎(𝑊 ℎ ℎ𝑡 − 1 + 𝑊(𝑒)𝑥𝑡 )
𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝑆)ℎ𝑡)

the students opened

books

laptops

exams

𝒚𝟏

𝒙𝟏

𝒉𝟏

𝒙𝟐

𝒉𝟐𝑾(𝒉)

𝒙𝟑

𝒉𝟑𝑾(𝒉)

𝒚𝟐 𝒚𝟑

𝒉𝟎

𝑾(𝒆) 𝑾(𝒆) 𝑾(𝒆)

𝑾(𝒉)



Recurrent Neural Networks

Working of RNN for the example 
sentence: 

the students opened their _____



Recurrent Neural Networks

Advantages of RNNs

1. They can process input sequences of any length.
2. The model size does not increase for longer input sequence lengths.
3. Computation for step t can (in theory) use information from many steps 

back.

Disadvantages of RNNs

1. Computation is slow - because it is sequential, it cannot be parallelized.
2. In practice, it is difficult to access information from many steps back due to 

problems like vanishing gradients and exploding gradients.



Recurrent Neural Networks

Vanishing and Exploding Gradients

Here, J(4) (θ) is the final output. We need to calculate the derivative of it w.r.t h(1)



Recurrent Neural Networks

Vanishing Gradient



Recurrent Neural Networks

Vanishing Gradient



Recurrent Neural Networks
Vanishing Gradient



Recurrent Neural Networks
Vanishing Gradient



Transformers-based Language 
Models



RNN – De-facto Standard Till 2017

§ Circa 2016, de facto in NLP was to encode sentences 
with a bidirectional LSTM
§ For example, the source sentence in a translation

§ Define your output (parse, sentence, summary) as a 
sequence, and use an LSTM to generate it. 

§ Use attention to allow flexible access to memory



RNN – Linear Interaction Distance/Non-parallelizable

§ RNNs are unrolled “left-to-right”. 
§ Useful: Nearby words often affect each other’s meanings 

§ Problem: RNNs take O(sequence length) steps for distant word pairs to 
interact

§ Problem: Linear Order is “baked in”. Not sure that is best.
§ Right-to-left
§ Left-to-right
§ Bi-directional RNNs.



Recurrence to Attention

§ Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.
§ For example, Layer 2 each node j computes 

∑,=$> 𝛼,𝑤,?ℎ,, s.t. Σ,𝛼, = 1
§ Max. interaction distance: O(1).



Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.



Transformers - Motivation

How can we speed up the encoding process of 
sequences?

§ Remove the recurrent connection (from RNNs)
§ Only use attention

§ But No order?
§ No nonlinearities. Just weighted average

Solution:
○ Positional Embeddings (encode positions as vectors)
○ Add non-linearities using separate layers FFN+BatchNorm



Self-Attention:keys, queries, values from the same 
sequence

Let 𝑤$∷! be the words in a vocab 𝑉. Like Zuko made his uncle Tea.
For a 𝑤,, let 𝑥, = 𝐸𝑤,, where 𝐸 ∈ ℝA×|D| is embedding matrix.
1. Transform 𝑥, (word-emb) with weight matrices 𝑄,𝐾, 𝑉 ∈ ℝA×A
         𝑞, = 𝑄𝑥, (queries).      𝑘, = 𝐾𝑥, (keys).       𝑣,= 𝑉𝑥, (values). 
2. Compute key-query similarities, and normalize

         𝑒,? = 𝑞,>𝑘?                    𝛼,? =
EFG H*+

∑+, EFG(H*+,)

3. Compute output for each word as weighted sum of values

𝒐, =	\
?

𝛼,?𝑣,



Transformers Position Encoding
Add positional encoding to 𝑥,, as ]𝑥, = 𝑥, + 𝑝,, where 𝑝, ∈ ℝA
Properties: monotonicity, translation invariance, and symmetry
● Sinusoidal position representations: concatenate sinusoidal functions of varying 

periods (in Vaswani et al. 2017, fully learnable embeddings in BERT/GPT etc.)

● Pros: 
○ Periodicity indicates that maybe “absolute position” isn’t as important 
○ Maybe can extrapolate to longer sequences as periods restart! 

● Cons: Not learnable; changed later (survey of PEs Wang et al. ICLR 2021)



Barriers and solutions for Self-Attention as a building 
block

● Doesn’t have an inherent notion 
of order! 

● No nonlinearities for deep 
learning magic! It’s all just 
weighted averages 

● Need to ensure we don’t “look at 
the future” when predicting a 
sequence 

○ Like in machine translation Or 
language modeling

● Add position representations to 
the inputs

● Easy fix: apply the same 
feedforward network to each self-
attention output. 

● Mask out the future by artificially 
setting attention weights to 0!



Transformers - Motivation
How can we speed up the encoding process of 
sequences? A: Only use attention
Barriers and Solutions
§ Position representations: 

§ Specify the sequence order, since self-attention 
is an unordered function of its inputs. 

§ Nonlinearities: 
§ At the output of the self-attention block 
§ Frequently implemented as a simple 

feedforward network. 
§ Masking

§ To parallelize operations while not looking at the 
future. 

§ Keeps information about the future from 
“leaking” to the past.

𝑥, + 𝑝,
𝑝,~	[sin

-
.
; … . ] 



Transformers Encoder: Building from self-attention

Queries 
Keys
Values. 

Same diagram with a bit more detail

How can we speed up the encoding process of 
sequences? A: Only use attention
Barriers and Solutions
§ Position representations: 

§ Specify the sequence order, since self-attention 
is an unordered function of its inputs. 

§ Nonlinearities: 
§ At the output of the self-attention block 
§ Frequently implemented as a simple 

feedforward network. 
§ Masking

§ To parallelize operations while not looking at the 
future. 

§ Keeps information about the future from 
“leaking” to the past.



Two Types of Transformer Layers – Encoders and 
Decoders
Types of Transformers
- Encoder-decoder 

- Machine Translation, most 
generic

- T5, BART
- Decoder only 

- Most popular, Language 
Modeling

- OpenAI GPT, GPT-3 
- Encoder only 

- Mainly for classification
- BERT, RoBERTa, ALBERT, ViT, 

Swin, CLIP



Encoder-Decoder Models

§ Encoder-Decoder
§ Many popular 

models: BART, T5, 
Pegasus

§ Trained using 
Unsupervised Objectives
§ Enc: Mask some tokens 

and predict
§ Enc+Dec: Predict the 

next sentence.

Masked Language Modeling
Next sentence 
prediction



Transformers Encoder-Decoder

● In Translation, we processed the 
source sentence with a bidirectional 
model and generated the target with 
a unidirectional model. 

● For this kind of seq2seq format, we 
use a Transformer Encoder-Decoder. 

● We use a normal Transformer 
Encoder. 

● Our Transformer Decoder is 
modified to perform cross-attention 
to the output of the Encoder



Transformer Decoder

In Addition to Encoder:
1. Cross-Attention between encoder-

decoder
2. Masking future inputs

Before we learn Cross-Attention
- Multi-Head Attention
- Residual Norm and Layer Norm (Add & 
Norm layer)

No Masking!



Multi-Head Attention (Sequence Stacked)

Key-query-value attention in matrix format
§ 𝑋 = 𝑥$; … ; 𝑥! ∈ ℝ!×A

§ Note 𝑋𝐾 ∈ ℝ!×A, 𝑋𝑄 ∈ ℝ!×A, 𝑋𝑉 ∈ ℝ!×A
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑄(𝐾𝑋)>) ∗ 𝑋𝑉



Transformer - Decoder 

Trick 1: Multiple Attention heads.
§ A single attention “head” learns to concentrate on a single property.
§ One for logically related, another for subject-objects
§ We need multiple heads. 
§ 𝑄- , 𝐾- , 𝑉- ∈ ℝ

.×!", ℎ is #attention-heads, 𝑙 ∈ {1,2, … , ℎ} 
§ Each head

outputJ =	𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑄0𝐾0>𝑋>) ∗ 𝑋𝑉0, 
§ Final output: 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡!; … , 𝑜𝑢𝑡𝑝𝑢𝑡5 , 

Trick 1.1:“Scaled Dot Product” attention aids in training. 
§ When dimensionality 𝑑 becomes large, dot products between vectors tend to become 

large. 
§ Because of this, inputs to the softmax function can be large, making the gradients small

outputJ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(	 LM0N0
1L1

2
3

) ∗ 𝑋𝑉0, 



Transformer - Decoder 

Trick 2 & 3: Optimization Tricks
§ Residual Normalization (add the input 

back)
§ 𝑥 + 𝑓(𝑥)

§ Layer Normalization
§ Make gradient descent converge faster.
§ Layer wise variations and mean – make it 

same.

§ Often written together as “Add & 
Norm”



Transformer – Decoder Cross Attention



Putting it All Together





Extra Slides on LLMs



The Self-Attention Process (diagrammatic)



Multi-Head Attention (diagrammatic)



Retrieval × LMs
- Document-Query Interaction 
- Retrieval-augmented LMs



Retrieval LMs (Multi-Vector Representations)



Retrieval Augmented LLMs

ColBERT (Contextualized Late 
interaction over BERT)
● ColBERT uses a late interaction 

architecture 
● Encodes the query and 

document independently
● Compute similarity later 

○ Use cached contextual document 
embeddings



Retrieval Augmented LMs (for QA)

● REALM is a language model pre-training 
paradigm 

● Novelty: It also incorporates a knowledge 
retriever to retrieve textual world 
knowledge

● REALM models avoid relying solely on 
model parameters, which can lead to 
memorizing all knowledge

Retrieve
Generate



REALM Performance


