Lecture 12: Language Models for IR CS60092: Introduction to IR Spring 2024

What is a Language Model?

An LM is

- a probability distribution over sequence of words.
- a way to predict the next word

For a sentence S consisting of m words

$$
S=w_{1} w_{2} w_{3} \ldots \ldots . w_{m}
$$

In Language Model, we assume:

$$
\begin{aligned}
P(S) & =P\left(w_{1} w_{2} w_{3} \ldots \ldots . . w_{m}\right) \\
& =P\left(w_{1}\right) \times P\left(w_{2} \mid w_{1}\right) \times \cdots \times P\left(w_{m} \mid w_{m-1} \ldots w_{1}\right)
\end{aligned}
$$

But How it is helpful to us?

What is a Language Model?

Using LM, we can find out

- If a sentence S_{1} is more likely than another S_{2} (conditioned on q, but ignore for now).

For example:

- S_{1} : Virat Kohli plays cricket for India.
- S_{2} : plays Kohli cricket for India Virat.
- S_{3} : Virat Kohli plays plays for India.

Which is more likely?
Obviously \mathbf{S}_{1}. Hence our $L M$ should say $\mathbf{P}\left(\mathbf{S}_{\mathbf{1}}\right)>\mathbf{P}\left(\mathbf{S}_{\mathbf{2}}\right)$ and $\mathbf{P}\left(\mathbf{S}_{\mathbf{1}}\right) \mathbf{> P}\left(\mathbf{S}_{\mathbf{3}}\right)$.

But, how can LM help us in IR?

Say q is "Kohli" D_{1} : Virat Kohli plays cricket for India. D_{2} : Virat Kohli plays plays for India. D_{2} : Sachin plays for India.

Using LM

- We can compute $P\left(D_{\mathrm{i}}\right)$ and $\mathrm{P}(\mathrm{q})$. With some assumptions

$$
P\left(q \mid D_{i}\right) \propto P\left(D_{i}, q\right)=P\left(D_{i}\right) P(q)
$$

- How to compute that?
- LM helps us learn $v_{D_{1}}, v_{D_{2}}, v_{D_{3}}, v_{q} \in \mathbb{R}^{d}$.
- We can approximate $P\left(D_{i}\right) P(q) \propto \frac{v_{D_{i}}^{T} v_{q}}{\left\|v_{D_{i}}\right\|\left\|v_{q}\right\|}$

n-gram Language Models

How to compute the Probability of the next word?

- Question: How to learn a language model?
- Answer: Learn a n-gram language model.

Definition: An n-gram is a chunk of n consecutive words.

- unigrams: "the", "students", "opened", "their"
- bigrams: "the students", "students opened", "opened their"
- trigrams: "the students opened", "students opened their"
- four-grams: "the students opened their"

Idea: Collect statistics about how frequent different n -grams are and use these to predict next word.

n-gram Language Models

Markov Assumption: w_{n} depends on preceding $n-1$ words.

$$
\begin{array}{cl}
P\left(w_{m} \mid w_{m-1}, \ldots w_{1}\right)=P\left(w_{m} \mid w_{m-1} \ldots w_{m-n+2}\right) & \\
=\frac{P\left(w_{m}, w_{m-1} \ldots w_{m-n+2}\right)}{P\left(w_{m-1} \ldots w_{m-n+2}\right)} & \begin{array}{l}
\text { Prob of n-gram }
\end{array} \\
& \text { Prob of n-1 gram }
\end{array}
$$

Question: How do we get these n-gram and ($n-1$)-gram probabilities?
Answer: By counting them in some large corpus of text!

$$
\approx \frac{\operatorname{count}\left(w_{m}, w_{m-1} \ldots w_{m-n+2}\right)}{\operatorname{count}\left(w_{m-1} \ldots w_{m-n+2}\right)}
$$

n-gram LM Model in Practice

You can build a simple trigram Language Model over a 1.7 million word corpus (Reuters) in a few seconds on your laptop* today the \qquad

Sparsity problem: not much granularity
in the probability distribution

Generating text with a n-gram Language Model

You can also use a LM to generate text
today the price of gold per ton, while production of shoe lasts and shoe industry, the bank intervened just after it considered and rejected an imf demand to rebuild depleted european stocks, sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than three words at a time if we want to model language well.

But increasing n worsens sparsity problem, and increases model size...

n-gram Language Models

Suppose we are learning a 4-gram Language Model.

as the proetor started the clock, the students opened their

discard

condition on this

1. Markov Assumption: Probability of a word depends on previous " n " words. What is the value of this n ?

- If n is small, then it may predict a different word. Eg: Consider S: In IPL, Virat Kohli plays cricket for \qquad . For $\mathrm{n}=5$, then the predicted word may be "India" but
- $n=7$, then the predicted word may be "RCB".
- If n is very large, computationally extensive.

2. A word may be dependent on next words as well.
3. The word "United" has very high probability if next 3 words are "_ States of America".

n-gram Language Models

1. The numerator may be zero. We may need to do Smoothing.
2. The denominator maybe zero for a given corpus. Say w3, w2 and w1 never cooccur in the corpus.To solve this, we could condition on w2 alone. This is called backoff.

Neural network Language Models

NN-based Language Models solves (some of) these problems related to n-gram Language Models.

$$
S=w_{1} w_{2} w_{3} \ldots \ldots \ldots . w_{n}
$$

For the $\mathbf{k}^{\text {th }}$ word w_{k}, we consider its Context or surrounding words (w_{-k})
We model the conditional probability:

$$
\mathrm{P}\left(\mathrm{w}_{\mathrm{k}} \mid \text { Context }\right)
$$

using a Neural network.

But how?

Neural network Language Models

Method 1 (Fixed-Window NN)

1. Word's probability depends on its context (but fixed window)
2. Each word has a fixed "continuous vector representation"
3. How to predict next word for the sentence "the students opened their \qquad "?
4. Assume you have a vector for each word. Look up vector for each word from a "lookup table"
5. INPUT: Concatenate vectors $\boldsymbol{e}=\left[\boldsymbol{e}^{(1)} ; \boldsymbol{e}^{(2)} ; \boldsymbol{e}^{(3)} ; \boldsymbol{e}^{(4)}\right]$
6. HIDDEN: $h=f\left(W e+b_{1}\right), W \in \mathbb{R}^{4 n \times d}$
7. OUTPUT: $\hat{y}=\operatorname{softmax}(\boldsymbol{U} h+\boldsymbol{b 2}), \boldsymbol{U} \in \mathbb{R}^{d \times|\boldsymbol{V}|}$
\hat{y} is the distribution over words in the vocab.

Neural network Language Models (Forward Pass)

Method 1 (Fixed-Window NN)

Step 1: Look up the vector representation for each word in the context from the "Look Up Table".

Example: Consider sentence "the students opened their \qquad "

Index	Word	Continuous Word Representation
1	the	$[0.6762,-0.9607,0.3626,-0.2410,0.6636]$
200	students	$[0.1656,-0.1530,0.0310,-0.3321,-0.1342]$
340	opened	$[0.5965,0.9143,0.0899,0.7702,-0.6392]$
490	their	$[-0.0069,0.7995,0.6433,0.2898,0.6359]$

Neural network Language Models (Forward Pass)

Concatenate the word vectors as shown:

$$
e=\left[e^{(1)} ; e^{(2)} ; e^{(3)} ; e^{(4)}\right]
$$

Concatenated vector \mathbf{e} is the INPUT LAYER to our Neural Network.

Neural network Language Models (Forward Pass)

Step 2: Hidden layer output " h " is calculated as:

$$
\boldsymbol{h}=\boldsymbol{f}\left(W e+b_{1}\right)
$$

$\longrightarrow W=? b_{1}=?$
$W=$ Weight matrix connecting Input Layer and Hidden Layer
$e=$ Input Layer concatenated vector (see last slide)
b1 = bias,
$f=$ tanh or sigmoid

Neural network Language Models (Forward Pass)

Step 3: Hidden to Output Layer:

$$
\begin{array}{ll}
\mathbf{z}=U \boldsymbol{h}+b_{2} \\
\hat{y}=\boldsymbol{\sigma}(\mathrm{z})
\end{array}
$$

$U=$ Weight matrix between Hidden Layer and Output Layer.
$h=$ Output of Hidden Layer calculated in the last slide
$b_{2}=$ bias
Softmax function: $\hat{y}_{i}=\sigma(z)_{i}=\frac{e^{z_{i}}}{\Sigma_{i} e^{z_{i}}}, y=<\mathrm{y}_{1}, \mathrm{y}_{2} \ldots, \mathrm{y}_{|\mathrm{V}|}>$

Neural network Language Models (Forward Pass)

In our example, the word "books" has the highest probability. The word "laptops" has $2^{\text {nd }}$ highest probability.

- $\hat{y}_{\text {books }}>\hat{y}_{\text {laptops }}$

The final sentence becomes: the students opened their books

Neural network Language Models

What did we learn? How do we infer?

- Given set of initial word vectors (lookup table), $\theta=<W, b, U, b 2>$, we can predict next word.
- Hence we can predict $P(S)$. How?

But, how do we train?

- How do we learn parameters $\theta=<W, b, U, b 2>_{\text {, }}$?
- Using gradient Descent. What corpus? Labeled or unlabeled? Objective?
- To be covered during the lecture for word2vec.

Neural network Language Models

Points to note:

1. Word's probability depends on the fixed window context (previous or surrounding).
2. A word has a single vector in a table.

- Even the ones such as "apple", "fall".

3. Estimation is only using a 3-layer NN.

Recurrent Neural Networks (Method 2)

Recurrent Neural Networks (RNN)

- Each word depends on all previous words in the "sentence/paragraph".
- RNNs add the immediate past to the present.

Here, is a simple architecture of RNN:

Recurrent Neural Networks

1. INPUT LAYER: $x=<x_{1}, x_{2}, \ldots x_{n}>$ is the input.
2. HIDDEN LAYER
3. Vertical box is a hidden unit i.e. $\left(h_{t}=\right.$ hidden unit at timestep $\left.t\right)$. There is only one Hidden layer .
4. The same computation is applied for t timesteps with t different words.
5. The Hidden unit at each step t has two inputs
6. h_{t-1} : output of the previous timestep and
7. the input at this timestep x_{t}.

Recurrent Neural Networks

the
students

HIDDEN LAYER COMPUTATION:

- $\boldsymbol{h}_{\boldsymbol{t}-\boldsymbol{1}}$ and $\boldsymbol{x}_{\boldsymbol{t}}$ are "scaled" by separate weight matrices to produce $\boldsymbol{h}_{\boldsymbol{t}}$
- $\boldsymbol{h}_{\boldsymbol{t}}$ is multiplied with a weight matrix $\boldsymbol{W}^{(S)} \in \mathbb{R}^{\boldsymbol{d \times}|\boldsymbol{V}|}$
- Then a softmax () over the vocabulary to get a prediction output $\boldsymbol{y}_{\boldsymbol{t}}$ of the next word.

$$
\begin{gathered}
h_{t}=\sigma\left(W^{(h)} h_{t-1}+W^{(e)} x_{t}\right) \\
y_{t}=\operatorname{softmax}\left(W^{(S)} h_{t}\right)
\end{gathered}
$$

Recurrent Neural Networks

Working of RNN for the example sentence:
the students opened their $\underline{h}^{(0)}$

 the students opened their \boldsymbol{h}| 0 |
| :---: |
| 0 |
| 0 |
| 0 | "'

the $\boldsymbol{x}^{(1)}$

Recurrent Neural Networks

Advantages of RNNs

1. They can process input sequences of any length.
2. The model size does not increase for longer input sequence lengths.
3. Computation for step t can (in theory) use information from many steps back.

Disadvantages of RNNs

1. Computation is slow - because it is sequential, it cannot be parallelized.
2. In practice, it is difficult to access information from many steps back due to problems like vanishing gradients and exploding gradients.

Recurrent Neural Networks

Vanishing and Exploding Gradients

Here, $J^{(4)}(\theta)$ is the final output. We need to calculate the derivative of it w.r.t $h^{(1)}$

Recurrent Neural Networks

Vanishing Gradient

Recurrent Neural Networks

Vanishing Gradient

Recurrent Neural Networks

Vanishing Gradient

Recurrent Neural Networks

Gradient signal from far away is lost because it's much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

Transformers-based Language Models

RNN - De-facto Standard Till 2017

- Circa 2016, de facto in NLP was to encode sentences with a bidirectional LSTM
- For example, the source sentence in a translation
- Define your output (parse, sentence, summary) as a sequence, and use an LSTM to generate it.

- Use attention to allow flexible access to memory

RNN - Linear Interaction Distance/Non-parallelizable

- RNNs are unrolled "left-to-right".
- Useful: Nearby words often affect each other's meanings
- Problem: RNNs take O(sequence length) steps for distant word pairs to interact
- Problem: Linear Order is "baked in". Not sure that is best.
- Right-to-left
- Left-to-right
- Bi-directional RNNs.

Recurrence to Attention

- Attention treats each word's representation as a query to access and incorporate information from a set of values.
- For example, Layer 2 each node j computes

$$
\sum_{i=1}^{T} \alpha_{i} w_{i j} h_{i} \text {, s.t. } \Sigma_{i} \alpha_{i}=1
$$

- Max. interaction distance: $O(1)$.

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys that map to values. The query matches one of the keys, returning its value.

In attention, the query matches all keys softly, to a weight between 0 and 1 . The keys' values are multiplied by the weights and summed.

Transformers - Motivation

How can we speed up the encoding process of sequences?

- Remove the recurrent connection (from RNNs)
- Only use attention

- But No order?
- No nonlinearities. Just weighted average

Solution:

- Positional Embeddings (encode positions as vectors)
- Add non-linearities using separate layers FFN+BatchNorm

Self-Attention:keys, queries, values from the same

 sequenceLet $w_{1:: n}$ be the words in a vocab V. Like Zuko made his uncle Tea.
For a w_{i}, let $x_{i}=E w_{i}$, where $E \in \mathbb{R}^{d \times|V|}$ is embedding matrix.

1. Transform x_{i} (word-emb) with weight matrices $Q, K, V \in \mathbb{R}^{d \times d}$

$$
q_{i}=Q x_{i} \text { (queries). } \quad k_{i}=K x_{i} \text { (keys). } \quad v_{i}=V x_{i} \text { (values) }
$$

2. Compute key-query similarities, and normalize

$$
e_{i j}=q_{i}^{T} k_{j} \quad \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{j} \exp \left(e_{i j \prime}\right)}
$$

3. Compute output for each word as weighted sum of values

$$
o_{i}=\sum_{j} \alpha_{i j} v_{i}
$$

Transformers Position Encoding

Add positional encoding to x_{i}, as $\tilde{x}_{i}=x_{i}+p_{i}$, where $p_{i} \in \mathbb{R}^{d}$
Properties: monotonicity, translation invariance, and symmetry

- Sinusoidal position representations: concatenate sinusoidal functions of varying periods (in Vaswani et al. 2017, fully learnable embeddings in BERT/GPT etc.)

$$
\boldsymbol{p}_{i}=\left(\begin{array}{c}
\sin \left(i / 10000^{2 * 1 / d}\right) \\
\cos \left(i / 10000^{2 * 1 / d}\right) \\
\vdots \\
\sin \left(i / 10000^{2 * \frac{d}{2} / d}\right) \\
\cos \left(i / 10000^{2 * \frac{d}{2} / d}\right)
\end{array}\right)
$$

- Pros:
- Periodicity indicates that maybe "absolute position" isn't as important
- Maybe can extrapolate to longer sequences as periods restart!
- Cons: Not learnable; changed later (survey of PEs Wang et al. ICLR 2021)

Barriers and solutions for Self-Attention as a building block

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages
- Need to ensure we don't "look at the future" when predicting a sequence
- Like in machine translation Or language modeling
- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each selfattention output.
- Mask out the future by artificially setting attention weights to 0 !

Transformers - Motivation

How can we speed up the encoding process of sequences? A: Only use attention
Barriers and Solutions

- Position representations:
- Specify the sequence order, since self-attentic is an unordered function of its inputs.
- Nonlinearities:
- At the output of the self-attention block
- Frequently implemented as a simple feedforward network.
- Masking
- To parallelize operations while not looking at 1 future.
- Keeps information about the future from
"leaking" to the past.

Transformers Encoder: Building from self-attention

How can we speed up the encoding process of sequences? A: Only use attention
Barriers and Solutions

- Position representations:
- Specify the sequence order, since self-attention is an unordered function of its inputs.
- Nonlinearities:
- At the output of the self-attention block
- Frequently implemented as a simple feedforward network.
- Masking
- To parallelize operations while not looking at the future.
- Keeps information about the future from
"leaking" to the past.
Probabilities

Two Types of Transformer Layers - Encoders and Decoders

Types of Transformers

- Encoder-decoder
- Machine Translation, most
generic
- T5, BART
- Decoder only
- Most popular, Language Modeling
- OpenAI GPT, GPT-3
- Encoder only
- Mainly for classification

Fig. 2. Representative large language models (LLMs) in recent years. Open-source models are represented by solid squares, while closed source models are represented by hollow squares.

- BERT, RoBERTa, ALBERT, ViT, Swin, CLIP

Encoder-Decoder Models

- Encoder-Decoder
- Many popular models: BART, T5, Pegasus
- Trained using Unsupervised Objectives
- Enc: Mask some tokens and predict
- Enc+Dec: Predict the next sentence.

Masked Language Modeling

Masked tokens

Transformers Encoder-Decoder

Softmax \uparrow

- In Translation, we processed the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq format, we use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform cross-attention to the output of the Encoder

Transformer Decoder

In Addition to Encoder:

1. Cross-Attention between encoderdecoder
2. Masking future inputs

Before we learn Cross-Attention

Multi-Head Attention (Sequence Stacked)

Key-query-value attention in matrix format

- $X=\left[x_{1} ; \ldots ; x_{n}\right] \in \mathbb{R}^{n \times d}$
- Note $X K \in \mathbb{R}^{n \times d}, X Q \in \mathbb{R}^{n \times d}, X V \in \mathbb{R}^{n \times d}$

$$
\text { output }=\operatorname{softmax}\left(X Q(K X)^{T}\right) * X V
$$

Transformer - Decoder

Trick 1: Multiple Attention heads.

- A single attention "head" learns to concentrate on a single property.
- One for logically related, another for subject-objects
- We need multiple heads.
- $Q_{l}, K_{l}, V_{l} \in \mathbb{R}^{d \times \frac{d}{h}}, h$ is \#attention-heads, $l \in\{1,2, \ldots, h\}$
- Each head

$$
\text { output }_{l}=\operatorname{softmax}\left(X Q_{l} K_{l}^{T} X^{T}\right) * X V_{l}
$$

- Final output: output $=\left[\right.$ output $_{1} ; \ldots$, output $\left.{ }_{h}\right]$,

Trick 1.1:"Scaled Dot Product" attention aids in training.

- When dimensionality d becomes large, dot products between vectors tend to become large.
- Because of this, inputs to the softmax function can be large, making the gradients small

$$
\text { output }_{l}=\operatorname{softmax}\left(\frac{X Q_{l} K_{l}^{T} X^{T}}{\sqrt{\frac{d}{h}}}\right) * X V_{l}
$$

Transformer - Decoder

Trick 2 \& 3: Optimization Tricks

- Residual Normalization (add the input back)
- $\quad x+f(x)$
- Layer Normalization
- Make gradient descent converge faster.
- Layer wise variations and mean - make it same.

- Often written together as "Add \& Norm"

Add Position
 Embeddings \uparrow

Embeddings

Transformer - Decoder Cross Attention

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let h_{1}, \ldots, h_{n} be output vectors from the Transformer encoder; $x_{i} \in \mathbb{R}^{d}$
- Let z_{1}, \ldots, z_{n} be input vectors from the Transformer decoder, $z_{i} \in \mathbb{R}^{d}$
- Then keys and values are drawn from the encoder (like a memory):
- $k_{i}=K h_{i}, v_{i}=V h_{i}$.
- And the queries are drawn from the decoder, $q_{i}=Q z_{i}$.

Putting it All Together

The Transformer

6 layers, each with $d=512$

$$
\begin{aligned}
& \text { multi-head attention keys and values } \\
& k_{t, 1}^{\ell}, \ldots, k_{t, m}^{\ell} \text { and } v_{t, 1}^{\ell}, \ldots, v_{t, m}^{\ell}
\end{aligned}
$$

$$
\bar{h}_{t}^{\ell}=\operatorname{LayerNorm}\left(\bar{a}_{t}^{\ell}+h_{t}^{\ell}\right)
$$

$$
\text { passed to next layer } \ell+1
$$

$$
h_{t}^{\ell}=W_{2}^{\ell} \operatorname{ReLU}\left(W_{1}^{\ell} \bar{a}_{t}^{\ell}+b_{1}^{\ell}\right)+b_{2}^{\ell}
$$

2-layer neural net at each position

$$
\bar{a}_{t}^{\ell}=\operatorname{LayerNorm}\left(\bar{h}_{t}^{\ell-1}+a_{t}^{\ell}\right)
$$ essentially a residual connection with LN

 residual connection with LN multi-head cross attention

residual connection with LN

Vaswani et al. Attention Is All You Need. 2017.

Extra Slides on LLMs

The Self-Attention Process (diagrammatic)

Multi-Head Attention (diagrammatic)

Scaled Dot-Product Attention

$\operatorname{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V})=\left[\operatorname{head}_{1} ; \ldots ;\right.$ head $\left._{h}\right] \mathbf{W}^{0}$
where head ${ }_{i}=\operatorname{Attention}\left(\mathbf{Q W}_{i}^{Q}, \mathbf{K W}_{i}^{K}, \mathbf{V W}_{i}^{V}\right)$

Retrieval $\times \mathrm{LMs}$

- Document-Query Interaction
- Retrieval-augmented LMs

Retrieval LMs (Multi-Vector Representations)

$\begin{array}{ll}\text { (a) Representation-based Similarity } & \text { (b) Query-Document Interaction }\end{array}$
(e.g., DSSM, SNRM)
(e.g., DRMM, KNRM, Conv-KNRM)
(c) All-to-all Interaction
(e.g., BERT)
(d) Late Interaction
(i.e., the proposed COIBERT)

Retrieval Augmented LLMs

CoIBERT (Contextualized Late interaction over BERT)

- ColBERT uses a late interaction architecture
- Encodes the query and document independently
- Compute similarity later
- Use cached contextual document embeddings

CoIBERT score
$s(q, d)=\sum_{i \in q} \max _{j \in d} E_{q_{i}} E_{d_{j}}^{T}$

BERT document encoder
L2 normalize
\square

Retrieval Augmented LMs (for QA)

- REALM is a language model pre-training paradigm
- Novelty: It also incorporates a knowledge retriever to retrieve textual world knowledge
- REALM models avoid relying solely on model parameters, which can lead to memorizing all knowledge

$$
p(y \mid x)=\sum_{z \in \mathcal{Z}} p(y \mid z, x) p(z \mid x)
$$

Knowledge Retriever The retriever is defined using a dense inner product model:

$$
\begin{aligned}
p(z \mid x) & =\frac{\exp f(x, z)}{\sum_{z^{\prime}} \exp f\left(x, z^{\prime}\right)}, \\
f(x, z) & =\operatorname{Embed}_{\text {input }}(x)^{\top} \operatorname{Embed}_{\text {doc }}(z),
\end{aligned}
$$

REALM Performance

BM25 + BERT (base, 100 M) T5 (base, 200 M)

Accuracy

