Lecture 12: Language Models for IR

CS60092: Introduction to IR
Spring 2024

Instructor: Prof. Somak Adltya Content: Inspired by CS224n Stanford Course

What is a Language Model?

An LM is

® a probability distribution over sequence of words.
® a way to predict the next word

For a sentence S consisting of m words
S =wiw,wy ... W
In Language Model, we assume:
P(S) = PWiWyW3 oo Wy)
= P(W1)XP(Wy|wp)X - XP (W, |Wyp—1 ... W1)

But How it is helpful to us?

What is a Language Model?

Using LM, we can find out

- If a sentence Sy is more likely than another S, (conditioned on g, but ignore for
now).

For example:

e S;:Virat Kohli plays cricket for India.
e S,: plays Kohli cricket for India Virat.
e Si: Virat Kohli plays plays for India.

Which is more likely?
Obviously S1. Hence our LM should say P(S¢) > P(S3) and P(S4) > P(S3).

But, how can LM help us in IR?

Say g is “Kohli” Dy: Virat Kohli plays cricket for India. D,: Virat Kohli plays plays
for India. D,: Sachin plays for India.

Using LM

e We can compute P(D;) and P(q). With some assumptions
P(q|D;) o< P(D;,q) = P(D;)P(q)

e How to compute that?
d
o LM helps us learn Vp,,Vp,, Vp,, Vg € R%.
vg.vq
l

||”Di| [vqll

o We can approximate P(D;)P(q) x

n-gram Language Models

How to compute the Probability of the next word? books

the students opened their _QA laptops
o exams
= Question: How to learn a language model?
= Answer: Learn a n-gram language model.

Definition: An n-gram is a chunk of n consecutive words.
= unigrams: “the”, “students”, “opened”, “their”

no non

= bigrams: “the students”, “students opened”, “opened their”

= trigrams: “the students opened”, “students opened their”
= four-grams: “the students opened their”

|dea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

n-gram Language Models
Markov Assumption: w,, depends on preceding n — 1 words.
P(Wi|Wp_q, owq) = PWi|Win_q e Win_ny2)

. P(Wm; Wm-1 ---Wm—n+2)

- P(Wm—l ---Wm—n+2)

-

Question: How do we get these n-gram and (n-1)-gram probabilities?
Answer: By them in some large corpus of text!

_ count(Wy,, Wp—1 - Wm—n+2)

count(Wyp—1 - Wim—n+2)

n-gram LM Model in Practice

You can build a simple trigram Language Model over a 1.7 million word

corpus (Reuters) in a few seconds on your laptop*

today the

get probability
distribution

company
bank
price
italian
emirate

0.153
0.153

0.077
0.039
0.039

Otherwise, seems reasonable!

Sparsity problem:
not much granularity
in the probability
distribution

* Try for yourself: https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

You can also use a LM to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

n-gram Language Models

Suppose we are learning a 4-gram Language Model.

-a-s-the-pmetmmted-theebek-thestudents opened the/r

discard

cond|t|on on this

1 1

1. Markov Assumption: Probability of a word depends on previous “n” words.

What is the value of this n?

O If nis small, then it may predict a different word. Eg: Consider S: In IPL, Virat Kohli plays cricket
for . For n =5, then the predicted word may be “India” but

O n=7,then the predicted word may be “RCB”.

O If nis very large, computationally extensive.

2. A word may be dependent on next words as well.
1. The word “United” has very high probability if next 3 words are “ _ States of America”.

n-gram Language Models

Problem: What if “students Partial Solution: Add small é to
opened their w” never occurred in the count for every w € V. This is
data? Then w has probability O! called smoothing.

/

ount(students opened their w)

) =
P(W |Student5 opened thei) count(students opened their)

Problem: What if “students / T

opened their” never occurred in Partial Solution: Just condition on
data? Then we can'’t calculate the “opened their”. Called backoff.
probability of w.

1. The numerator may be zero. We may need to do Smoothing.
2. The denominator maybe zero for a given corpus. Say w3, w2 and w1 never cooccur in the
corpus.To solve this, we could condition on w2 alone. This is called backoff.

Neural network Language Models

NN-based Language Models solves (some of) these problems related to n-gram

Language Models.
S = Wi Wor W3 v vie s . Wy
For the kth word w;, we consider its Context or surrounding words (w_y)

We model the conditional probability:

P(w, | Context)

using a Neural network.

But how?

Neural network Language Models

Method 1 (Fixed-Window NN)

1. Word's probability depends on its context (but fixed
window)

Each word has a fixed “continuous vector representation”
How to predict next word for the sentence “the students

opened their __"?

1.

2.
3.
4.

Assume you have a vector for each word. Look up vector for
each word from a “lookup table”

INPUT: Concatenate vectors e = [e(l); e e3, e(‘”]
HIDDEN: h = f(We + b,),W € R#nxd
OUTPUT: = softmax(Uh + b2),U € R**VI

y is the distribution over words in the vocab.

books
\

X

laptops

i
[11

a

ol

200

U

(000000

000000|

14

h

(0000 0000 0000 0000]

|

the
(1)

|

students

e

|

opened
2(3)

|

their
24

Neural network Language Models (Forward Pass)

Method 1 (Fixed-Window NN)

Step 1: Look up the vector representation for each word in the context from the “Look Up

Table".
Example: Consider sentence “the students opened their

1

Index Word Continuous Word Representation

1 the [0.6762, -0.9607, 0.3626, -0.2410, 0.6636]
200 students [0.1656, -0.1530, 0.0310, -0.3321, -0.1342]
340 opened [0.5965, 0.9143, 0.0899, 0.7702, -0.6392]

490 their [-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]

Neural network Language Models (Forward Pass)

Concatenate the word vectors as shown :

(0000 0000 0000 0000)|

1]

the students opened their
(1) 2 (2) x(3) (4

e = [e®); e®@); ¢3); o]

Concatenated vector e is the INPUT LAYER to our Neural Network.

Neural network Language Models (Forward Pass)

[oooooooooooo] HIDDEN h

A

w

(0000 0000 0000 0©000] INPUTE

Step 2: Hidden layer output “h" is calculated as:

h=fWe+b) ——|_W="b =

W = Weight matrix connecting Input Layer and Hidden Layer
e = Input Layer concatenated vector (see last slide)

b1 = bias,

f = tanh or sigmoid

Neural network Language Models (Forward Pass)

Step 3: Hidden to Output Layer:

Z:Uh+b2 U=?bh, =7

y =0a(2)

U = Weight matrix between Hidden Layer and Output Layer.
h = Output of Hidden Layer calculated in the last slide
b, = bias

zj

Softmax function: §; = a(z); = %, Yy =<y.Y2 -, Y| >

Neural network Language Models (Forward Pass)

In our example, the word “books” has
the highest probability. The word
“laptops” has 2nd highest probability.

® Ybooks > ylaptops

The final sentence becomes:

the students opened their books

books
laptops

L il

U

a

(e00000000000|

)

w

(0000 0000 0000 0000|

T

the students opened their
(1) () z(3) e

Neural network Language Models

What did we learn? How do we infer?
- Given set of initial word vectors (lookup table), 8 =< W, b, U, b2 >, we can

predict next word.
- Hence we can predict P(S). How? X _’[fo ()]"?
< 6?
1) — g0 _p—=
But, how do we train? 0 0 Tse

- How do we learn parameters 8 =< W, b, U, b2 >,?
- Using gradient Descent. What corpus? Labeled or unlabeled? Objective?

- To be covered during the lecture for word2vec.

Neural network Language Models

books
laptops

Points to note:

1. Word’s probability depends on the H Tﬂ_‘ﬂ

fixed window context (previous or

a

surrounding). U

2. A word has a single vector in a table.
- Even the ones such as “apple’, “fall’. [‘....‘.‘.‘0.]

3. Estimation is only using a 3-layer NN. |

w

(0000 0000 0000 0000|

T

the students opened their
(1) () z(3) e

Recurrent Neural Networks (Method 2)

Recurrent Neural Networks (RNN)
e Each word depends on all previous words in the “sentence/paragraph”.
e RNNs add the immediate past to the present.

Here, is a simple architecture of RNN:

Yi-1

(0000 | (0000
the students opened

Recurrent Neural Networks

h,
Y,
{ ’ Hidden Units
; hy o)
> @ w |le
® > @
®
O
X X Input
t 7 : (1-hot vectors or
(XX X) [....] [....J dense vectors)

1. INPUT LAYER: x =< x4, X3, ... x, > is the input.
2. HIDDEN LAYER

1. Vertical box is a hidden unit i.e. (h, = hidden unit at timestep t). There is only one Hidden layer .

2. The same computation is applied for t timesteps with t different words.
3. The Hidden unit at each step t has two inputs

1. h,_4:output of the previous timestep and

2. the input at this timestep x,.

books
Recurrent Neural Networks

Y1 Y2 y3 Q laptops
h1 T hz T h3 T exams

w® ol wm ® wh ®

ho < —(o > o

:‘ ([J [J

x |W xp |W© x3 (W

9000 000 000

the students opened

HIDDEN LAYER COMPUTATION:
- h;_q and x; are "scaled” by separate weight matrices to produce h,
- h; is multiplied with a weight matrix W) € RV
- Then a softmax() over the vocabulary to get a prediction output y,; of the next word.
hy = oW, | + w9x,)
y, = sof tmax(W(S)ht)

Recurrent Neural Networks

Working of RNN for the example
sentence:

the students opened their 2

books
laptops

(W
5
r &

U
h(4)
O @)
el W. |@®
O | @
O O
g
W, W,
(@] (@]
o e®)| ©
O o
o o
% ‘Tl‘g
the students opened their

2D 2(2) (3 (1)

Recurrent Neural Networks

Advantages of RNNs

1. They can process input sequences of any length.
2. The model size does not increase for longer input sequence lengths.

3. Computation for step t can (in theory) use information from many steps
back.

Disadvantages of RNNs

1. Computation is slow - because it is sequential, it cannot be parallelized.
2. In practice, it is difficult to access information from many steps back due to
problems like vanishing gradients and exploding gradients.

Recurrent Neural Networks

Vanishing and Exploding Gradients

Here, J® (0) is the final output. We need to calculate the derivative of it w.r.t h(1)

Recurrent Neural Networks

Vanishing Gradient

Recurrent Neural Networks

Vanishing Gradient

0J _ 0h® Oh® o aJW
R ~ R OR®@ RO oh®

chain rule!

Recurrent Neural Networks

Vanishing Gradient

What happens if these are small?

J(4)(9)
N
he_ he)_ R
o) 0
W i) |%%4 i) | %%
1@ 1@
o) 0]
Oh'| Oh®) OhW| oJW
OhM) Oh(2) On®)|" oh®

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further

Recurrent Neural Networks

Vanishing Gradient
J?) () J4(9)

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

Transformers-based Language
Models

RNN - De-facto Standard Till 2017

= Circa 2016, de facto in NLP was to encode sentences i»l:::m
with a bidirectional LSTM

" For example, the source sentence in a translation

= Define your output (parse, sentence, summary) as a
sequence, and use an LSTM to generate it.

= Use attention to allow flexible access to memory

RNN - Linear Interaction Distance/Non-parallelizable

= RNNs are unrolled “left-to-right”.
= Useful: Nearby words often affect each other's meanings

= Problem: RNNs take O(sequence length) steps for distant word pairs to
interact
= Problem: Linear Order is “baked in”. Not sure that is best.
= Right-to-left
= Left-to-right
= Bi-directional RNNs.

O(sequence length)
\

\
[
o000 -—> —> 000 —
I
000 «— «—> 000 «—>

The chef who ... was

Recurrence to Attention

= Attention treats each word’s representation as a query to access and

incorporate information from a set of values.
= For example, Layer 2 each node j computes

L aw b, st T =1
= Max. interaction distance: O(1).

attention

attention

embedding , l .
1 h;

h;

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a vl
b v2
query
d ¢ v3
output
d v4d —> v4
e v5

In attention, the

matches all keys softly,

to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

keys values Weighted

k1
k2

query
q k3
k4

k5

Sum
vl
v2
output
o T
v4
v5

Transformers - Motivation

Encoder outputs

How can we speed up the encoding process of
sequences?
= Remove the recurrent connection (from RNNSs)
= Only use attention

Input embedding +
Positional embeddings

= But No order?
= No nonlinearities. Just weighted average

Solution:
o Positional Embeddings (encode positions as vectors)
O Add non-linearities using separate layers FFN+BatchNorm

Self-Attention:keys, queries, values from the same

sequence
Let wy.., be the words in a vocab V. Like Zuko made his uncle Tea.

Foraw;, letx; = Ew;, where E € R**IVl is embedding matrix.
1. Transform x; (word-emb) with weight matrices Q, K,V € R%*¢

q; = Qx; (queries). = Kx; v;= Vx; (values).
2. Compute key-query similarities, and normalize
T exp(e;;)
Y 1 Y Zjl eXp(eij/)

3. Compute output for each word as weighted sum of values

keys values Weighted

Sum
k1 vi
0i = E @ijvi al
- query

output
J q k3 v3 z_)

k4 v4

k5 v5

Transformers Position Encoding

Add positional encoding to x;, as ¥; = x; + p;, where p; € R?

Properties: monotonicity, translation invariance, and symmetry

e Sinusoidal position representations: concatenate sinusoidal functions of varying
periods (in Vaswani et al. 2017, fully learnable embeddings in BERT/GPT etc.)

/- . 2x1 d\ -_ b > -
sin(i/100002*1/4) PRI S ___;.:x = =
cos(i/10000%%/%) 5B —
Pi = : 5=
- £
o
sin(i/lOOOOz*Z/d)
. 2*—/d
\COS(l/lOOOO -)/ Index in the sequence

e Pros:
o Periodicity indicates that maybe “absolute position” isn’'t as important
o Maybe can extrapolate to longer sequences as periods restart!
e Cons: Not learnable; changed later (survey of PEs Wang et al. ICLR 2021)

Barriers and solutions for Self-Attention as a building

block

Doesn’t have an inherent notion e Add position representations to
of order! —” theinputs

e No nonlinearities for deep o Easy fix: apply the same
learning magic! It's all just feedforward network to each self-

: — :

weighted averages attention output.

e Need to ensure we don't “look at e Mask out the future by artificially
the future” when predicting a —> setting attention weights to 0!
sequence

o Like in machine translation Or
language modeling

Transformers - Motivation

How can we speed up the encoding process of
sequences? A: Only use attention
Barriers and Solutions

= Position representations:
= Specify the sequence order, since self-attentic
is an unordered function of its inputs.
= Nonlinearities:

= At the output of the self-attention block
= Frequently implemented as a simple
feedforward network.

= Masking
= To parallelize operations while not looking at 1
future.

= Keeps information about the future from
“leaking” to the past.

The

X1+ P1

FF FF FF
f f f
self-attention
EfE FE FF
! f f
self-attention
. . [N N] .
|1) W3 Wn
chef who food

p1~ [sin (Ii() .

Transformers Encoder: Building from self-attention

How can we speed up the encoding process of
sequences? A: Only use attention
Barriers and Solutions

= Position representations:

= Nonlinearities:

= Masking

Probabilities

Softmax
N
Linear
N

Feed-Forward

1

Masked Self-
Attention

Queriesm
Block
Values.
Add Position
Embeddings
™

Repeat for number
of encoder blocks

Embeddings
Inputs

Same diagram with a bit more detail

Two Types of Transformer Layers - Encoders and
Decoders

110M 117M-1.5B 175B Unk
Types of Transformers e R .. e
%‘ Output Text 110M-340M 1.2T 1758 1758 1378
(XLNet] (GLaM) OPT }—{OPT-ML] [Bard
- Encoder-decoder g B G U= 0 -
. . oot Toxt
- Machine Translation, most " pati|
7B-13B
. e 1111 Bl B M
generlC Output Text GLM | \:LM 13OB
140M f 4.1B-2698 208 208
- T5 BA RT 5 7 ST-MoE | [UL2 |——{Flan-UL2 |
’ T g Features . = < — =2
3 us Switch)
Decoder only A= i%hg@gggwkwAggamﬂ
Input Text ot —E 7
- Most popular Language -------------------- TIONES40N ™" " " "G B>->i‘ ------ itggw "'"""""""""""""""“s?’f'ﬂ'B‘ --------- -0-----é ------
- - 11M-223M 14M- HOM pen ource
M d | , _g Features el Closed-Source
oaeling H -
o
[*}
= O e nAl G PT G PT_3 ‘E inputText oBERTA| ERNIE DeBERTa
)
125M-355M 1141 44M-304M
2019 2020 (2021} 2022 2023 >

Encoder only

Fig. 2. Representative large language models (LLMs) in recent years. Open-source models are represented by solid squares, while closed source
models are represented by hollow squares.

= Mainly for classification
- BERT, RoBERTa, ALBERT, VIT,
Swin, CLIP

Encoder-Decoder Models

Next sentence

= Encoder-Decoder Masked Language Modeling prediction
- |\/|any popular Masked tokens Target text
models: BART, T5, [mythical] [names] It is purewhite.<eos>
Pegasus I } R
= Trained using
Unsupervised Objectives Transformer Encoder Transformer Decoder

= Enc: Mask some tokens

and predict TTTT“ bttt Pttt

= Enc+Dec: Predict the Pegasus s . [MASK1] it the model .] [<s> It is pure white .

next sentence. J
ext sentence Inputtext\\ Target text [Shifted Right]

4 2

Pegasus is |mythical| . (It is pure white . It|names|the model .

\

Transformers Encoder-Decoder

In Translation, we processed the
source sentence with a bidirectional
model and generated the target with
a unidirectional model.

For this kind of seg2seq format, we
use a Transformer Encoder-Decoder.

We use a normal Transformer
Encoder.

Our Transformer Decoder is
modified to perform cross-attention
to the output of the Encoder

Add & Norm
N

Feed-Forward

Add & Norm
N
Multi-Head

Attention

Block

Add Position
Embeddings
T

Embeddings

Encoder Inputs

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

Add & Norm

N
Multi-Head
Attention

Add & Norm

AN
Masked Multi-
Head Attention
N

W

Add Position
Embeddings

Embeddings

Decoder Inputs

Transformer Decoder der

In Addition to Encoder:
1. Cross-Attention between encoder-
decoder

2. Masking future inputs Al Nom
Feed-Forward

Before we learn Cross-Attention

- Multi-Head Attention

- Residual Norm and Layer Norm (Add &

Norm layer)

Add & Norm
N
Multi-Head

Attention

Block

Add Position
Embeddings

No Masking! T

Embeddings

Encoder Inputs

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

Add & Norm

N
Multi-Head
Attention

Add & Norm

AN
Masked Multi-
Head Attention
N

W

Add Position
Embeddings
T

Embeddings

Decoder Inputs

Multi-Head Attention (Sequence Stacked)

Key-query-value attention in matrix format
= X =[xg;..;x,] € R
= Note XK € R4 X(Q € R4, XV € R™*¢
output = softmax(XQ(KX)T) x XV

All pairs of
XQ - XQKT xT attention scores!

KTXT e RV

P

softmax| xokTxT | xv =
output € R™*4

Transformer - Decoder

Trick 1: Multiple Attention heads.

= Asingle attention “head” learns to concentrate on a single property.
= One for logically related, another for subject-objects

= We need multiiple heads.

= Qu,K,V, € Rdxﬁ, h is #attention-heads, [€ {1,2, ..., h}
= Each head

output; = softmax(XQ, K/ XT) = XV,
" Final output: output = [output,; ..., output,],

Trick 1.1:"Scaled Dot Product” attention aids in training.

= When dimensionality d becomes large, dot products between vectors tend to become
large.

Because of this, inputs to the softmax function can be large, making the gradients small

ey

output; = softmax(

Transformer - Decoder

Trick 2 & 3: Optimization Tricks
= Residual Normalization (add the input

back)
- x+ f(x)

= Layer Normalization

» Make gradient descent converge faster.
= Layer wise variations and mean — make it
same.

x_
output = *Y +
p Jote y+B8

Normalize by scalar / \ Modulate by learned

mean and variance elementwise gain and bias

= Often written together as "Add &
Norm”

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

T

|
Add & Norm
N
Masked Multi-

Head Attention

,L/P\ Block

Add Position
Embeddings

T

Embeddings

Repeat for number
of encoder blocks

Decoder Inputs

Transformer - Decoder Cross Attention

* We saw that self-attention is when keys,
queries, and values come from the same
source.

* Inthe decoder, we have attention that hl' S hn

looks more like what we saw last week.

Add & Norm
* Let hy4, ..., h,, be output vectors from the o~
Transformer encoder; x; € R? el
* Letz,...,z, beinput vectors from the
d Add & Norm
Transformer decoder, z; € R 2
Multi-Head

Attention

* Then keys and values are drawn from the
encoder (like a memory):
- ki = Khi, Vi = Vhl Add Position

Embeddings

Block

* And the queries are drawn from the
decoder, qi = QZi' Embeddings

Encoder Inputs

Add & Norm
AN
Multi-Head

Attention

Add & Norm

AN
Masked Multi-
Head Attention

Block

Add Position
Embeddings
T

Embeddings

Decoder Inputs

Putting it All Together

The Transformer Output

Probabilities

multi-head attention keys and values

K vwe 3 B, B0 T g 4 05705
6 layers, each with d =512
70) Y, residual connection with LN
hy = La’yerNorm(a’t + ht) Feed . hﬂ — WERGLU(WEC—LK L be) I be
passed to next layer £ + 1 Ao 2 1%t 1 2
) P 0t ¢ P —1 Add 8 Norm residual connection with LN
— L a L Add & Nom | Multi-Head))
h WyReLU(Wya; + by) + b [Feed Atiion | < multi-head cross attention
2-layer neural net at each position (S - N
0 ~0—1 , - ‘_%Add & Norm Je4——— residual connection with LN
a; = LayerNorm(h; ™~ + ay) "} +(Add& Nom) Masked
Multi-Head Multi-Head =
essentially a residual connection with LN | |~ Attention | same as encoder only masked
‘ J S ‘/)
. 70-1 Positional osition:
in . 0sitiong A A Positional
put ht Encoding ®_(> g Encoding
Output: af Input Output
Embedding Embedding
concatenates attention from all heads I 1
Inputs Qutputs
(shifted right)

Vaswani et al. Attention Is All You Need. 2017.

Evolutionary
G
Tree 5?

Closed-Source EG

@) \J

BardG [GPT-4@ W [Qurassic-242! [Claudel
Q

5

Anthropic
OPT-IMLI2N A
BLOOMZ] %l GalacticalgV|GLM| @?& 5 Sl

YalM V] G
PaLlMG

[Chinchilld©®

InstructG
LaMDAG
G\ Copher O [ERNIES. 0 1yt | e

GPT-NeoX[@}

XLNet[c] | open source

Decoder-Only

GloVe
Word2Vec

FastText

Jurassic-1jea

GPT-1[e}
GPT-Neo[®)

PT-36

1

Ex

| closed source
GPT-2[6)]

GPT-1[6)]

0SeOOEO™

®

Extra Slides on LLMs

The Self-Attention Process (diagrammatic)

Layer:| 5 §| Attention:| Input - Input s

street_
because_
it_

was_
too_

tire

Attention(Q,K,V) = softmax(g

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

Output
Probabilities

Add & Norm

((Add & Norm h
S MultHead | |
Feed Attention
Forward Nx
Nx | Add & Norm
Add & Norm sked
Multi-Head Multi-Head
Attention Attention
A) A g)
] J < J
Positional ® A Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Multi-head attention

Scaled Dot-Product h
Attention

1 —

L L Ll Ll
| Linear l]' Linear l]l Linear l]
Vv K Q

Scaled dot-product attention

MatMul

Multi-Head Attention (diagrammatic)

Scaled Dot-Product Attention

[MatMul]
F N A
Concat
SoftMax A '
1 Scaled Dot-Product
' > Attention .]J h
1l 1l 10
Scfle o o o
Linear Linear Linear
¥ 7 7
MatMul
(] v K Q
Q K %

MultiHead(Q, K, V) = [head;. . .; head;] WY
where head; = Attention(QWQ KWE VW)

542

Retrieval X LMs

Retrieval LMs (Multi-Vector Representations)

Query Document

(a) Representation-based Similarity ~ (b) Query-Document Interaction (c) All-to-all Interaction (d) Late Interaction
(e.g., DSSM, SNRM) (e.q., DRMM, KNRM, Conv-KNRM) (e.q., BERT) (i.e., the proposed ColBERT)

Retrieval Augmented LLMs

CoIBERT (Contextualized Late
interaction over BERT)

ColBERT score

e ColBERT uses a late interaction . 4 -y, maxs 5, 5
architecture

e Encodesthe query and / }
document independently _’ s : __ Mg
[! i —1—» maxjey E, ET
e Compute similarity later |
o Use cached contextual document :
embeddings
_.

£
[]

j_’ - Eq’v EZ;

Retrieval Augmented LMs (for QA)

e REALM is a language model pre-training Knowledge Retriever The retriever is defined using a
. dense inner product model:
paradigm
e Novelty: It also incorporates a knowledge p(z|z) = <P f(z,2)
retriever to retrieve textual world > .exp f(x,2)
knowledge f(z,2) = Embed;nput(z) ' Embedgoc(2),

e REALM models avoid relying solely on
model parameters, which can lead to
memorizing all knowledge

pylz) => plylz) pz|).

z€Z / \

Generate
Retrieve

REALM Performance

; Unlabeled text, from pre-training corpus (') -,

' s | B BM25 + BERT (base, 100M) M T5 (base, 200M)
| The [MASK] at the top of the pyramid (7) :

T5 (lazge, 700M) M T5 (3B) © T5(11B) M T5 (11B + SSM)
B REALM (300M)

l

Al ANSWeT S e :
\ [MASK] = pyramidion (y) |

Natural Questions

A
:
:
et retrieve :
knowledge - ---- {Neural Knowledge Retriever ~ pa(z|:v)] o
corpus (Z) S 45 404
1 Z | 0 36.6
s Retrieved document sssssssssesssseeasnne: 'gﬁ!
. The pyramidion on top allows for less a2l 35
' material higher up the pyramid. (z) | o | 30
1 <!
+ Query and document - ~t----co oo 5 f‘; ! 25
' [CLS] The [MASK] at the top of the pyramid ' — | 20
E [SEP] The pyramidion on top allows for less | =
| material higher up the pyramid. (z,z) i I 15
l < | 10
L 5
(Knowledge—Augmented Encoder ~ p(y|z, z)j '
| 0
i
!
I

Accuracy

