Lecture 16: Supervised Methods, Neural Networks and Learning to Rank

Information Retrieval

Instructor: Prof. Somak Aditya

Slides Courtesy: Learning to Rank Tutorial

Categorization/Classification

Given:

- A representation of a document d
- A fixed set of classes: $C = \{c_1, c_2, ..., c_J\}$

Determine:

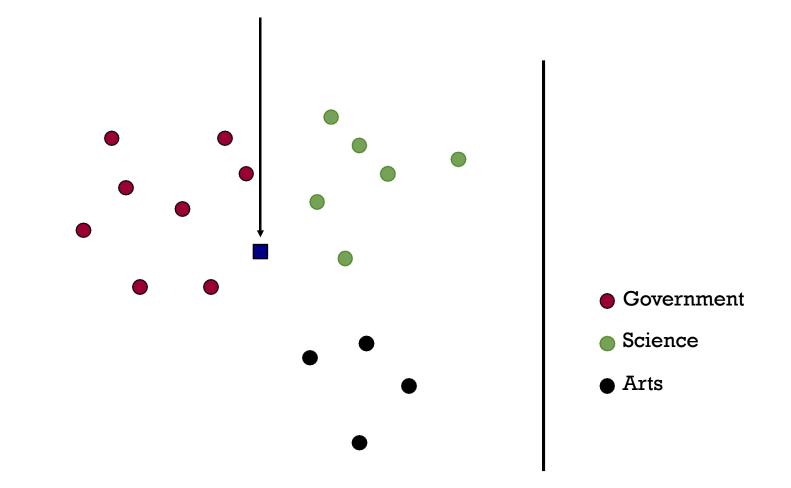
• The category of d: $\gamma(d) \in C$, where $\gamma(d)$ is a classification function

Problem:

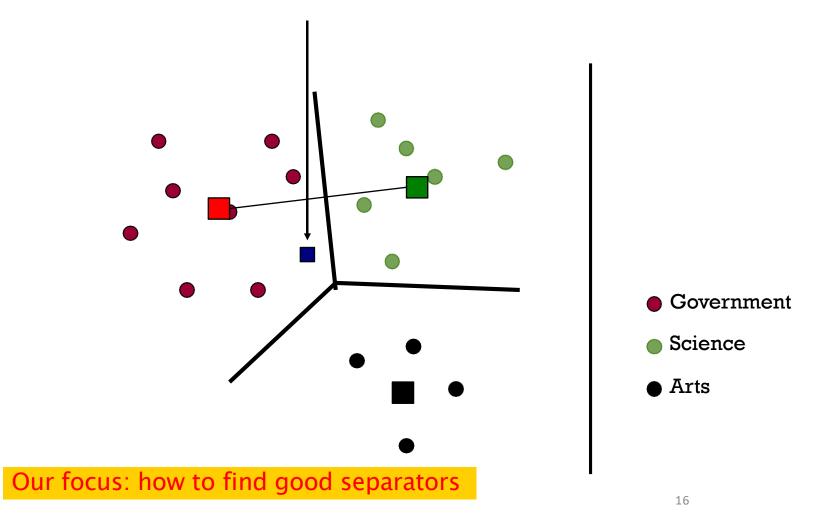
• We want to learn classification functions ("classifiers").

15

Test Document of what class?



Test Document = Government



Machine learning for IR ranking?

We learnt

- Methods for ranking documents in IR
 - Cosine similarity, inverse document frequency, BM25, proximity, pivoted document length normalization, Pagerank, ...
- Supervised learning problems
- RQ: Can we can use machine learning to rank the documents displayed in search results?
 - Known as "machine-learned relevance" or "learning to rank"
 - Actively researched and used by Web search engines

Simple example: Using classification for ad hoc IR

Collect a training corpus of (q, d, r) triples

- Relevance r is here binary (but may be multiclass, with 3–7 values)
- Query-Document pair is represented by a feature vector
- Train a machine learning model to predict the class r of a document-query pair
- Problems With this:
 - > Classification problems: Map to an unordered set of classes
 - Regression problems: Map to a real value
 - Ordinal regression (or "ranking") problems: Map to an ordered set of classes

"Learning to rank"

- > Assume a number of categories **C** of relevance exist
 - > These are totally ordered: $c_1 < c_2 < \ldots < c_J$
 - > This is the ordinal regression setup
- > Assume training data is available consisting of document
 - query pairs (d, q) represented as feature vectors x_i with
 - \succ relevance ranking c_i

LEARNING TO RANK

Learning to rank (L2R)

Defnition

- "... the task to automatically construct a ranking model using training data, such that the model can *sort new objects* according to their degrees of relevance, preference, or importance." - Liu [2009]

L2R models represent

- a rankable item e.g., <u>a document</u>, given
- some context, e.g., <u>a query</u> as a numerical vector $\vec{x} \in \mathbb{R}^n$.

The model f: $\vec{x} \rightarrow \mathbb{R}$ s.t. $f(\vec{x}_R) > f(\vec{x}_{NR})$

- **trained** to map the vector to a real-valued score such that relevant items are scored higher

Approaches

Based on training objectives [Liu 2009]:

- > Pointwise approach: Relevance label $y_{q,d}$ is a number
 - Supervision: binary or graded human judgments or implicit user feedback (e.g., CTR).
 - > Classification/regression to predict $y_{q,d}$, given $\vec{x}_{q,d}$.

Pairwise approach: pairwise preference between documents for a query $(d_i >_q d_j)$ as label.

Supervision: pairwise preference

Task: Given $\langle q, d_i, d_j \rangle$, predict 1 (if d_i is preferred) or 0 otherwise.

Listwise approach: optimize for rank-based metric, such as NDCG
 difficult because these metrics are often not differentiable w.r.t. model parameters.

Features

Traditional L2R models employ hand-crafted features

They can often be categorized as:

Query-independent or static features (e.g., incoming link count and document length)

➤Query-dependent or dynamic features (e.g., BM25)

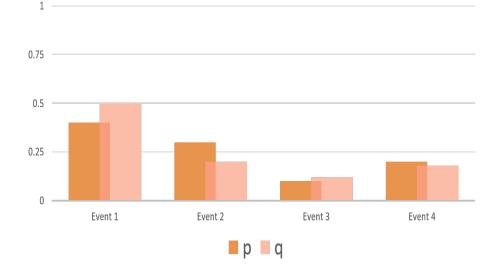
Query-level features (e.g., query length)

Refresher: Cross-entropy

• The cross entropy between two probability distributions *p* and *q* over a discrete set of events is given by,

$$CE(p,q) = -\sum_{i} p_i \log(q_i)$$

• Single-label classification: $CE(p,q) = -\log(q_{correct})$

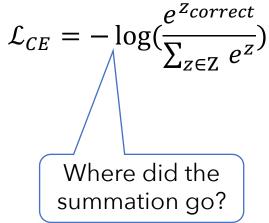


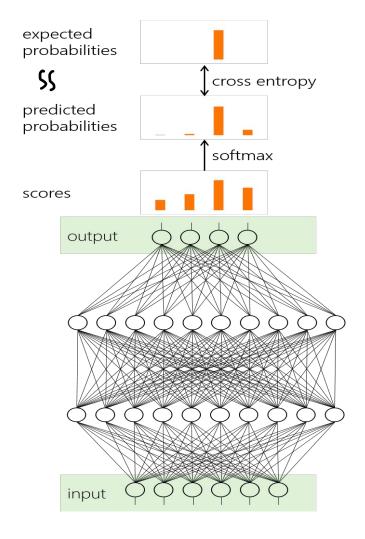
Refresher: CE with softmax

• Cross entropy with softmax is a popular loss function for classification

$$q(z_i) = \frac{e^{z_i}}{\sum_z e^z}$$
$$CE(p,q) = -\sum_i p_i \log(q_i)$$

• Shorthand:





L2R Loss Functions

PointWise Loss

PairWise Loss

ListWise Approaches

Pointwise Loss

Regression-based or classification-based approaches are popular

- Regression loss
 - Given $\langle q, d \rangle$ predict the value of $y_{q,d}$
 - E.g., square loss for binary or categorical labels,

$$L_{Squared} = \left\| y_{q,d} - f(\vec{x}_{q,d}) \right\|^2$$

• where, $y_{q,d}$ is (generally) the actual value of the label

Pointwise Loss

Regression-based or classification-based approaches are popular

- Classification loss
 - Given $\langle q, d \rangle$ predict the value of $y_{q,d}$
 - E.g., Cross-Entropy with Softmax over categorical labels Y,

$$L_{CE}(q, d, y_{q,d}) = -\log\left(p(y_{q,d} | q, d)\right) = -\log\left(\frac{e^{s_{y_{q,d}}}}{\sum_{v \in V} e^{s_{y}}}\right)$$

• where, $s_{y_{q,d}}$ is model's score for label $y_{q,d}$

Pairwise Loss

- Minimizes the average number of inversions in ranking
 - ▶ i.e., $d_i >_q d_j$ but d_j is ranked higher than d_i
- For $\langle q, d_i \rangle$ and $\langle q, d_j \rangle$ Feature vectors: \vec{x}_i and \vec{x}_j
 - Model scores: $s_i = f(\vec{x}_i)$ and $s_j = f(\vec{x}_j)$
 - Say, d_i is more relevant. $\Rightarrow s_i > s_j$

 Pairwise loss generally has the following form[Chen et al., 2009],

 $L_{pairwise} = \phi(s_i - s_j)$

where, ϕ can be,

- Hinge function $\phi(z) = \max(0; 1 z)$
- Logistic function $\phi(z) = \log(1 + e^{-z})$

RankNet

RankNet [Burges et al. 2005] is a pairwise loss function

- popular choice for training Neural L2R models.

Predicted probabilities:
$$p_{ij} = p(s_i > s_j) \equiv \frac{e^{\gamma \cdot s_i}}{e^{\gamma \cdot s_i} + e^{\gamma \cdot s_j}} = \frac{1}{1 + e^{-\gamma(s_i - s_j)}}$$

and $p_{ji} \equiv \frac{1}{1 + e^{-\gamma(s_j - s_i)}}$

Desired probabilities: $\bar{p}_{ij} = 1$ and $\bar{p}_{ji} = 0$

Computing cross-entropy between \bar{p} and p,

$$\mathcal{L}_{RankNet} = -\bar{p}_{ij}\log(p_{ij}) - \bar{p}_{ji}\log(p_{ji})$$
$$= -\log(p_{ij})$$
$$= log(1 + e^{-\gamma(s_i - s_j)})$$

CE with softmax over Documents

Alternative:

- Assume a single relevant document d^+ .
- Compare against full collection D

Probability of retrieving d^+ for q is given by the softmax function,

$$p(d^+|q) = \frac{e^{\gamma \cdot s(q,d^+)}}{\sum_{d \in D} e^{\gamma \cdot s(q,d)}}$$

The cross entropy loss is then given by,

$$\mathcal{L}_{\mathsf{CE}}(q,d^+,D) = -log\Big(p(d^+|q)\Big)$$

$$= -log\Big(\frac{e^{\gamma \cdot s}(q,d^+)}{\sum_{d \in D} e^{\gamma \cdot s}(q,d)}\Big)$$
summation at the bottom.

CE vs RankNet

➢If we consider only a pair of relevant and non-relevant documents in the denominator, CE reduces to RankNet

➢Computing the denominator is prohibitively expensive -- L2R models typically consider few negative candidates

➤Large body of work in NLP to deal with similar issue that may be relevant to future L2R models

Importance sampling, negative sampling

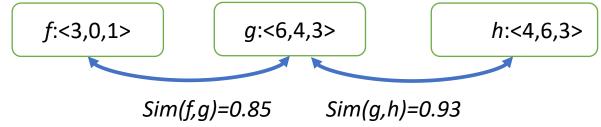
ListWise

A Simple Example:

o function <i>f</i> :	<i>f</i> (A)=3, <i>f</i> (B)=0, <i>f</i> (C)=1	ACB
o function <i>h</i> :	h(A)=4, h(B)=6, h(C)=3	BAC
o ground truth g:	g(A)=6, g(B)=4, g(C)=3	ABC

Question: which function is closer to ground truth?

- Based on pointwise similarity: sim(f,g) < sim(g,h).
- Based on pairwise similarity: sim(f,g) = sim(g,h)
- Based on cosine similarity between score vectors?



• According to position-wise discount f should be closer to g.

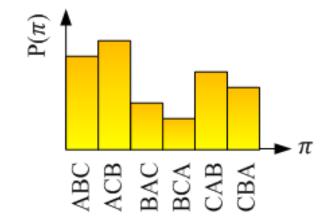
Permutation Probability Distribution

Question:

- How to represent a ranked list?

Solution

- Ranked list $\leftarrow \rightarrow$ Permutation probability distribution
- More informative representation for ranked list: permutation and ranked list has 1-1 correspondence.

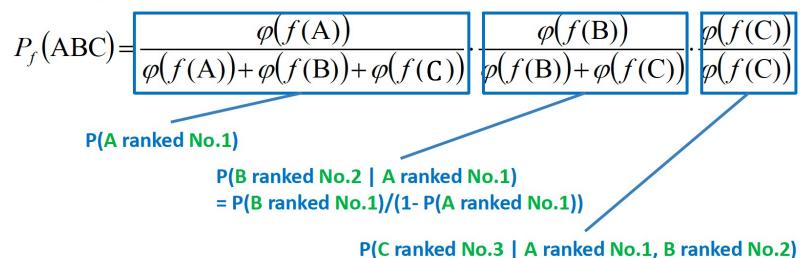


Luce Model: Defining Permutation Probability

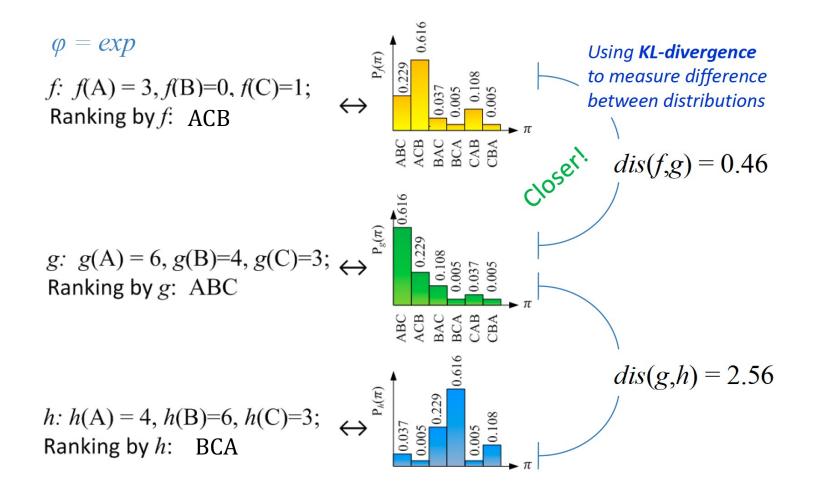
• Probability of permutation π is defined as

$$P_{s}(\pi) = \prod_{j=1}^{n} \frac{\varphi(s_{\pi(j)})}{\sum_{k=j}^{n} \varphi(s_{\pi(k)})} \frac{P(ABC)}{P(ACB)}$$

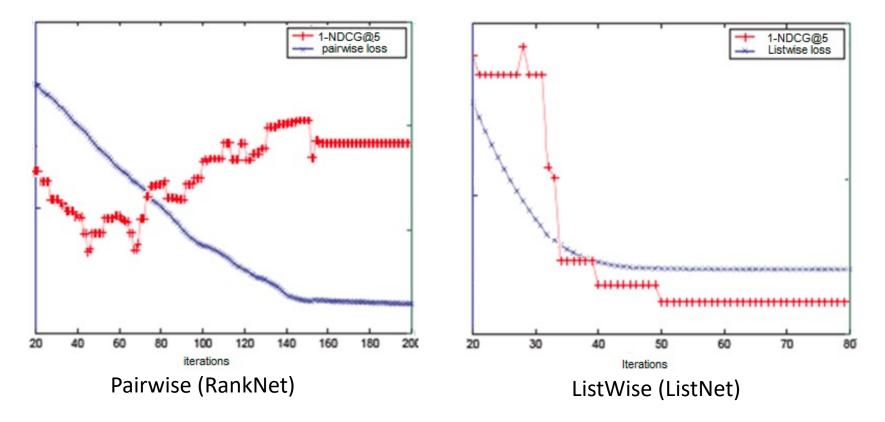
• Example:



Distance between Ranked Lists



Experimental Results (ListNet) (Z. Cao, T. Qin, T. Liu, et al. ICML 2007)



Training Performance on TD2003 Dataset

ListNet vs ListMLE

ListNet [Cao et al., 2007]

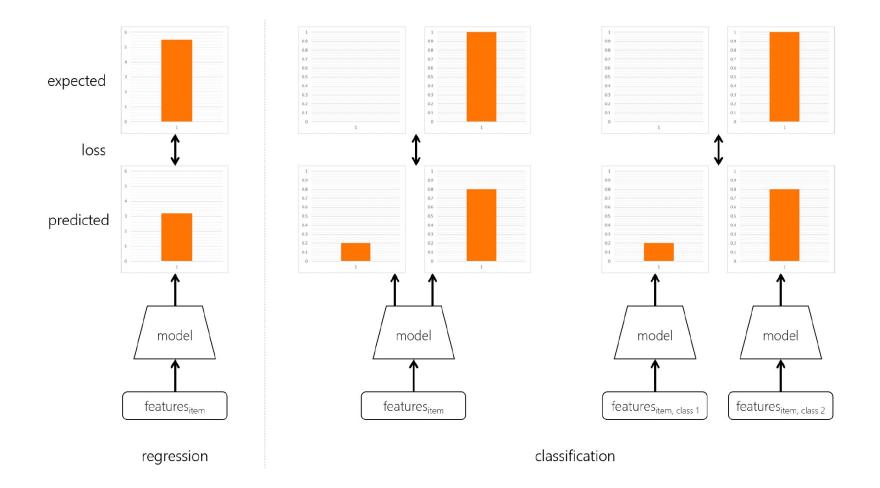
- Compute the probability distribution over all possible permutations based on model score and ground-truth labels. The loss is then given by the K-L divergence between these two distributions.
- This is computationally very costly, computing permutations of only the top-K items makes it slightly less prohibitive

ListMLE [Xia et al. 2008]

• Compute the probability of the ideal permutation based on the ground truth. However, with categorical labels more than one permutation is possible which makes this difficult.

Extra Slides

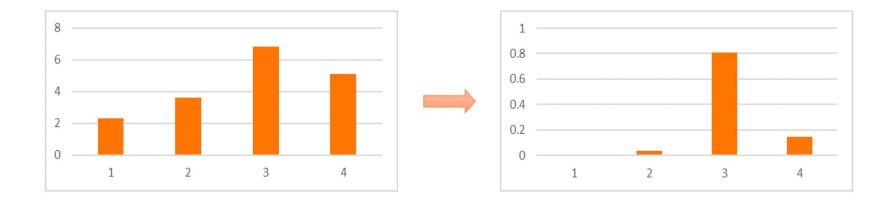
Short Intro: Cross Entropy + NN



Short Intro : What is softmax

• The softmax function is popularly used to normalize the neural network output scores across all the classes

$$p(z_i) = \frac{e^{z_i}}{\sum_z e^z}$$



Supervision/Annotations

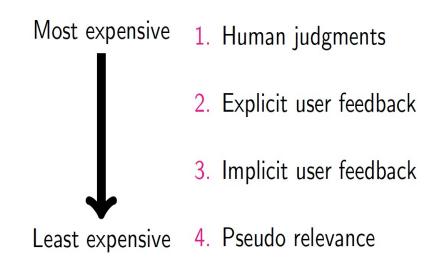
Different Levels of Supervision

Data requirements for training an offline L2R system

- Query/document pairs that encode an ideal ranking given a particular query.
- Ideal ranking? Relevance, preference, importance [Liu, 2009], novelty & diversity [Clarke et al., 2008].
- What about personalization? Triples of user, query and document.
- Related to evaluation. Pairs also used to compute popular offline evaluation measures.
- Graded or binary. "documents may be relevant to a different degree"
- Absolute or relative? Zheng et al. [2007]

Satisfying Data-Hungry Models

There are different ways to obtain query/document pairs.



Human Judgements

Human judges determine the relevance of a document for a given query.

How to determine candidate query/document pairs?

- Obtaining human judgments is expensive.
- List of queries: sample of incoming traffic or manually curated.
- Use an existing rankers to obtain rankings and pool the outputs [Sparck Jones and van Rijsbergen, 1976].
- Trade-off between number of queries (shallow) and judgments (deep) [Yilmaz and Robertson, 2009].

Explicit User Feedback

- When presenting results to the user, ask the user to explicitly judge the documents.
- Unfortunately, users are only rarely willing to give explicit feedback [Joachims et al., 1997].

Extracting pairs from click-through data (training)

Extract implicit judgments from search engine interactions by users.

 \succ Assumption: user clicks \Rightarrow relevance (or, preference).

Virtually unlimited data at very low cost, but interpretation is more difficult.

Presentation bias: users are more likely to click higher-ranked links.
 How to deal with presentation bias? Joachims [2003] suggest to interleave different rankers and record preference.

➢Chains of queries (i.e., search sessions) can be identified within logs and more fine-grained user preference can be extracted [Radlinski and Joachims, 2005].