
Introduction to Information Retrieval

Introduction to

Information Retrieval

Lectures 4: Skip Pointers, Phrase Queries,
Positional Indexing

Introduction to Information Retrieval

Introduction to

Information Retrieval

Faster postings merges:
Skip pointers/Skip lists

Introduction to Information Retrieval

Recall basic merge
§ Walk through the two postings simultaneously, in

time linear in the total number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if the index isn’t changing too fast).

Sec. 2.3

Introduction to Information Retrieval

Augment postings with skip pointers
(at indexing time)

§ Why?
§ To skip postings that will not figure in the search

results.
§ How?
§ Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

Sec. 2.3

Introduction to Information Retrieval

Query processing with skip pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

Suppose we’ve stepped through the lists until we
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

Sec. 2.3

Introduction to Information Retrieval

Where do we place skips?
§ Tradeoff:

§ More skips ® shorter skip spans Þ more likely to skip.
But lots of comparisons to skip pointers.

§ Fewer skips ® few pointer comparison, but then long skip
spans Þ few successful skips

Sec. 2.3

Introduction to Information Retrieval

Placing skips
§ Simple heuristic: for postings of length L, use ÖL

evenly-spaced skip pointers [Moffat and Zobel 1996]

§ Easy if the index is relatively static; harder if L keeps
changing because of updates.

§ This definitely used to help; with modern hardware it
may not unless you’re memory-based [Bahle et al. 2002]

§ The I/O cost of loading a bigger postings list can outweigh
the gains from quicker in memory merging!

Sec. 2.3

Introduction to Information Retrieval

Introduction to

Information Retrieval

Handling phrase queries

Introduction to Information Retrieval

9

Phrase queries
§We want to answer a query such as [stanford university] – as a
phrase.
§Thus The inventor Stanford Ovshinsky never went to university
should not be a match.
§The concept of phrase query has proven easily understood by
users.
§About 10% of web queries are phrase queries.
§Consequence for inverted index: it no longer suffices to store
docIDs in postings lists for terms.
§Two ways of extending the inverted index:

§biword index
§positional index

Introduction to Information Retrieval

10

Biword indexes

§Index every consecutive pair of terms in the text as a phrase.
§For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”
§Each of these biwords is now a vocabulary term.
§Two-word phrases can now easily be answered.

Introduction to Information Retrieval

11

Longer phrase queries

§A long phrase like “stanford university palo alto” can be
represented as the Boolean query “STANFORD UNIVERSITY” AND
“UNIVERSITY PALO” AND “PALO ALTO”
§Does this always guarantee the correct match? -- We need to
do post-filtering of hits to identify subset that actually contains
the 4-word phrase.

§What about phrases like, “abolition of slavery”?

Introduction to Information Retrieval

12

Extended biwords
§Parse each document and perform part-of-speech tagging
§Bucket the terms into (say) nouns (N) and articles/prepositions
(X)
§Now deem any string of terms of the form NX*N to be an
extended biword
§Examples: catcher in the rye

N X X N
king of Denmark

N X N
§Include extended biwords in the term vocabulary
§Queries are processed accordingly

Introduction to Information Retrieval

13

Issues with biword indexes

§Why are biword indexes rarely used?
§False positives, as noted above
§Index blowup due to very large term vocabulary

§What can be an alternative?

Introduction to Information Retrieval

14

Positional indexes

§Positional indexes are a more efficient alternative to biword
indexes.
§Postings lists in a nonpositional index: each posting is just a
docID
§Postings lists in a positional index: each posting is a docID and
a list of positions

Introduction to Information Retrieval

15

Positional indexes: Example
Query: “to1 be2 or3 not4 to5 be6”
TO, 993427:

‹ 1: ‹7, 18, 33, 72, 86, 231›;
2: ‹1, 17, 74, 222, 255›;
4: ‹8, 16, 190, 429, 433›;
5: ‹363, 367›;
7: ‹13, 23, 191›; . . . ›

BE, 178239:
‹ 1: ‹17, 25›;
4: ‹17, 191, 291, 430, 434›;
5: ‹14, 19, 101›; . . . ›

Introduction to Information Retrieval

16

Proximity search
§We just saw how to use a positional index for phrase searches.
§Can we also use it for proximity search?
§For example: employment /4 place
§Find all documents that contain EMPLOYMENT and PLACE within 4
words of each other.

§Employment agencies that place healthcare workers are
seeing growth is a hit.
§Employment agencies that have learned to adapt now
place healthcare workers is not a hit.

Introduction to Information Retrieval

17

Proximity search

§Use the positional index
§Simplest algorithm: look at cross-product of positions of (i)
EMPLOYMENT in document and (ii) PLACE in document
§Very inefficient for frequent words, especially stop words
§Note that we want to return the actual matching positions, not
just a list of documents.

Introduction to Information Retrieval

18

Combination scheme
§Biword indexes and positional indexes can be profitably
combined.
§Many biwords are extremely frequent: Michael Jackson etc
§For these biwords, increased speed compared to positional
postings intersection is substantial.
§Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.
§Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme – Next Word Index. Faster than a positional
index, at a cost of 26% more space for index.

