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How do you evaluate a search engine / 
algorithm [say for e-commerce]
§ How fast does it index?

§ Number of documents/hour
§ Incremental indexing – site adds 10K products/day

§ How fast does it search?
§ Latency and CPU needs for site’s 5 million products

§ Does it recommend related products?
§ This is all good, but it says nothing about the quality 

of search
§ You want the users to be happy with the search experience

Sec. 8.6
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How do you tell if users are happy?
§ Search returns products relevant to users

§ How do you assess this at scale?

§ Search results get clicked a lot
§ Misleading titles/summaries can cause users to click

§ Users buy after using the search engine
§ Or, users spend a lot of $ after using the search engine

§ Repeat visitors/buyers
§ Do users leave soon after searching?
§ Do they come back within a week/month/… ?

3
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Happiness: elusive to measure

§ Most common proxy: relevance of search results
§ But how do you measure relevance?

§ Pioneered by Cyril Cleverdon in the Cranfield 
Experiments

Sec. 8.1
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Measuring relevance

§ Three elements:
1. A benchmark document collection 
2. A benchmark suite of queries
3. An assessment of either Relevant or Nonrelevant for 

each query and each document

Sec. 8.1
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So you want to measure the quality of 
a new search algorithm
§ Benchmark documents – the products
§ Benchmark query suite – more on this
§ Judgments of document relevance for each query

6

5 million products

50000
sample 
queries

Relevance
judgement
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Relevance judgments
§ Binary (relevant vs. non-relevant) in the simplest 

case, more nuanced (0, 1, 2, 3 …) in others
§ What are some issues already?
§ 5 million times 50K takes us into the range of a 

quarter trillion judgments
§ If each judgment took a human 2.5 seconds, we’d still need 

1011 seconds, or nearly $300 million if you pay people $10 
per hour to assess

§ 10K new products per day

7
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Crowd source relevance judgments?
§ Present query-document pairs to low-cost labor on 

online crowd-sourcing platforms
§ Hope that this is cheaper than hiring qualified assessors

§ Lots of literature on using crowd-sourcing for such 
tasks

§ Main takeaway – you get some signal, but the 
variance in the resulting judgments is very high

8



Introduction to Information Retrieval

9

What else?
§ Still need test queries

§ Must be appropriate to docs in corpus
§ Must be representative of actual user needs
§ Random query terms from the documents generally not a 

good idea
§ Sample from query logs if available

§ Classically (non-Web)
§ Low query rates – not enough query logs
§ Experts hand-craft “user needs”

Sec. 8.5
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Some public test Collections

Sec. 8.5

Typical 
TREC
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Evaluating an IR system
§ Note: user need is translated into a query
§ Relevance is assessed relative to the user need, not 

the query
§ E.g., 

§ Information need: My swimming pool bottom is becoming 
black and needs to be cleaned.

§ Query: pool cleaner

§ Assess whether the doc addresses the underlying 
need, not whether it has these words

Sec. 8.1
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Now we have the basics of a benchmark
§ Let’s review some evaluation measures

§ Precision
§ Recall
§ DCG
§ … 

12
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Unranked retrieval evaluation:
Precision and Recall

§ Binary assessments
Precision: fraction of retrieved docs that are relevant = 

P(relevant|retrieved)
Recall: fraction of relevant docs that are retrieved
 = P(retrieved|relevant)

§ Precision P = tp/(tp + fp)
§ Recall  R = tp/(tp + fn)

Relevant Nonrelevant

Retrieved tp fp

Not Retrieved fn tn

Sec. 8.3
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Venn Diagram Based Visualization
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Rank-Based Measures

§ Binary relevance
§ Precision@K (P@K)
§ Mean Average Precision (MAP)
§ Mean Reciprocal Rank (MRR)

§ Multiple levels of relevance
§ Normalized Discounted Cumulative Gain (NDCG)
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Precision@K

§ Set a rank threshold K

§ Compute % relevant in top K

§ Ignores documents ranked lower than K

§ Ex:                  
§ Prec@3 of ? 
§ Prec@4 of ?
§ Prec@5 of ?

§ In similar fashion we have Recall@K
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Average Precision

§ Consider rank position of each relevant doc
§ K1, K2, … KR

§ Compute Precision@K for each K= K1, K2, … KR
§ Average precision = average of P@K

§ Ex:                    has AvgPrec of 76.0
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Average Precision

Why AP is calculated only at relevant doc positions?
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Mean average precision
§ MAP is Average Precision across multiple 

queries/rankings

§ MAP is macro-averaging: each query counts equally

§ Now perhaps most commonly used measure in 
research papers
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What if the results are not in a list?
§ Suppose there’s only one Relevant Document
§ Scenarios: 

§ known-item search
§ navigational queries
§ looking for a fact

§ Search duration ~ Rank of the answer 
§ measures a user’s effort
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Mean Reciprocal Rank

§ Consider rank position, K, of first relevant doc
§ Could be – only clicked doc

§ Reciprocal Rank score =

§ MRR is the mean RR across multiple queries  

K
1
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BEYOND BINARY RELEVANCE
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fair

fair

Good



Introduction to Information Retrieval

Discounted Cumulative Gain
§ Popular measure for evaluating web search and 

related tasks

§ Two assumptions:
§ Highly relevant documents are more useful than 

marginally relevant documents
§ The lower the ranked position of a relevant document, 

the less useful it is for the user, since it is less likely to 
be examined
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Discounted Cumulative Gain
§ Uses graded relevance as a measure of  

usefulness, or gain, from examining a document
§ Gain is accumulated starting at the top of the 

ranking and may be reduced, or discounted, at 
lower ranks

§ Typical discount is 1/log (rank)
§ With base 2, the discount at rank 4 is 1/2, and at rank 

8 it is 1/3
§ Intuition: if a good document is retrieved at rank 4, 

system gets only half the credit that it would have got 
if the doc were to be retrieved at rank 1
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Summarize a Ranking: DCG

§ What if relevance judgments are in a scale of 
[0,k]? k>=2

§ Let the ratings of the n documents be r1, r2, …rn (in 
ranked order)

§ Cumulative Gain (CG) at rank n
§ CG = r1+r2+…rn

§ Discounted Cumulative Gain (DCG) at rank n
§ DCG = r1 + r2/log22 + r3/log23 + … rn/log2n

§ We may use any base for the logarithm
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Discounted Cumulative Gain
§ DCG is the total gain accumulated at a particular 

rank p:

§ used by some web search companies
§ emphasis on retrieving highly relevant documents
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DCG Example
§ 10 ranked documents judged on 0-3 relevance 

scale: 
3, 2, 3, 0, 0, 1, 2, 2, 3, 0

§ Discounted gain: 
3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0 
= 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0

§ DCG:
3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
 

§ A problem: how to compare DCG for queries 
having different number of relevant docs?
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Summarize a Ranking: NDCG

§ Normalized Discounted Cumulative Gain (NDCG) 
at rank n
§ Normalize DCG at rank n by the DCG value at rank n of 

the ideal ranking
§ The ideal ranking would first return the documents with 

the highest relevance level, then the next highest 
relevance level, etc

§ Normalization useful for contrasting queries with 
varying numbers of relevant results

§ NDCG is now quite popular in evaluating Web 
search
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NDCG for the same example
§ 10 ranked documents judged on 0-3 relevance scale: 

3, 2, 3, 0, 0, 1, 2, 2, 3, 0
§ Perfect ranking:   3, 3, 3, 2, 2, 2, 1, 0, 0, 0
§ Ideal DCG values:

§ 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10
§ Actual DCG (from two slides back):

§ 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
§ NDCG values (divide actual by ideal):

§ 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
§ NDCG £ 1 at any rank position
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NDCG – Another Example

i
Ground Truth Ranking Function1 Ranking Function2

Document 
Order ri

Document 
Order ri

Document 
Order ri

1 d4 2 d3 2 d3 2

2 d3 2 d4 2 d2 1

3 d2 1 d2 1 d4 2

4 d1 0 d1 0 d1 0

NDCGGT=1.00 NDCGRF1=1.00 NDCGRF2=0.9203
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6309.4== GTDCGMaxDCG

4 documents: d1, d2, d3, d4


